
2007 Oct 1 Sample Learning Goals Development Trajectory Steven Wolfman, UBC

Tracking Changing Learning Goals (Brief Version)

Anne and Steve are building learning goals for CPSC 101. Our efforts fall between the proposed

level for core and non-core courses and focus at the lecture not course level. Here, we discuss

development of JavaScript (JS) unit goals, illustrating some efforts and benefits of the process.

15 months ago: 101 students were to “learn JavaScript”, but detailed goals came only from the

text, sample exam questions, and the remarks: “Learning JavaScript will introduce you to

programming: the expression of algorithms in a computer executable language!” and “JavaScript

will illustrate to you central programming concepts such as: the importance of structuring data

and key ‘control constructs’.” We worked with two examples in lecture and then held an in-class

problem session. Students fared poorly on problem sessions and exams, and we were

disappointed with our goals’ vagueness and tenuous connection to exams.

10 months ago: We articulated our implicit learning goals for the JS unit, connecting to high-

level course goals. We added new goals to our existing slides, such as “You will:

• appreciate the extra power to express processes of a programming language (vs. a markup

language)

• understand a few key programming “control constructs”, particularly events and conditionals

[2 more goals elided]

• be able to modify existing JavaScript code to suit your purposes”

Explicitly articulating goals clarified our own intentions, suggested small changes to the

lectures, and eased “hand-off” to TAs and other instructors. Students and staff could also

“attribute” quiz and exam questions to explicitly stated goals. But, these goals remain

vague. (What does “understand a few key programming ‘control constructs’ ” mean?)

�ow: We are again revising goals, with more changes to teaching materials. We previously

underemphasized a key skill: reading and tracing existing code. We now explicitly teach this as

the “study/model/predict/experiment/refine” process. New goals emphasize this process, e.g.:

• accurately model & predict the behaviour of variables in JS programs

• accurately model & predict the flow of control in a JS program through sequential execution

• accurately model (and so predict) the evaluation of any expression, no matter how complex,

as long as you have a good model of the parts

• accurately model (and so predict) the flow of control in a JS program through a function call

Lectures pose small programming problems for students to solve, before detailed instruction.

Students discuss solutions and the models implied by each solution, experiment, and refine their

models. Assessment is surprisingly straightforward, e.g., we can assess “accurately model & predict

the behaviour of variables in JS programs” with a problem like:

 x = num1; // Line 1
 y = num2; // Line 2
 x = y; // Line 3
 z = x + y; // Line 4
 z = z + 1; // Line 5
 alert("z is: " + z);

Sketch the state of each of the variables after each line of code executes. What does the program output?

Formative in-class assessments suggest this approach is working well.

