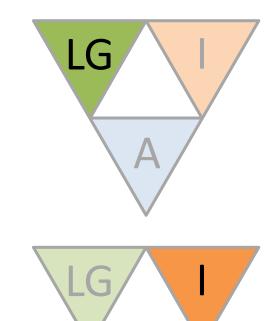
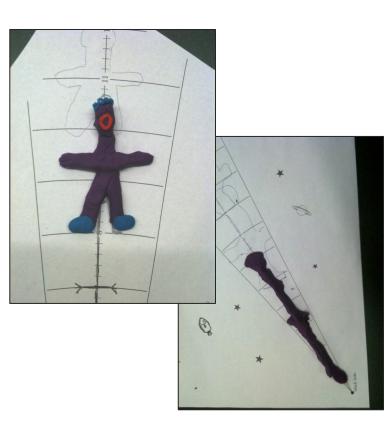


Transforming Introductory Astronomy:

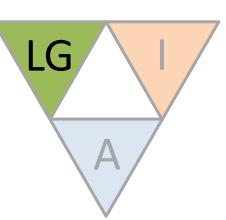
From Learning Goals to Instruction and Assessment Peter Newbury, Harvey Richer, Brett Gladman and Ludo Van Waerbeke – Dept. of Physics and Astronomy 💋


The Department of Physics and Summary Astronomy offers two introductory astronomy course for non-Science students. Over the last two years, we transformed our course by cycling through (i) identifying learning goals, (ii) using evidence-based methods of instruction to promote learning and (iii) measuring learning gains through pre- and post-test assessments. Results show our successes comes from shepherding the students through learning activities where they generate their own knowledge.

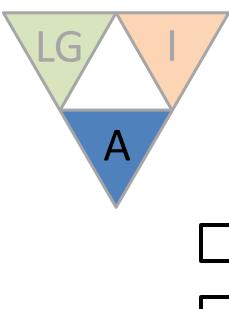
Course description Students in ASTR 310 (Exploring the Solar System) and ASTR 311 (Exploring the Stars and Galaxies), roughly 300 per term, attend three 50-minute lectures each week and one 50-minute lab every other week. We concentrated our efforts on creating hands-on activities for these labs. The design of the activities is based on three pillars:


Alongside each activity, we create a guide for TAs and instructors which outlines the steps to run the activity and, whenever possible, the pedagogical justification for these steps.

ASTR 311: Black Holes


Describe what you would see and feel if you fell into a black hole.

After exploring the origin of tidal forces, students track the motion of an astronaut who falls into a black hole and gets "spaghettified".


Q8: An astronaut falling feet-first into a is stretched out black hole and "spaghettified" because the □ pull of gravity on his feet is much greater than the pull on his head □ black hole's rapid rotation stretches him □ magnetic field pulls strongly on his boots □ electric field pulls oppositely charged particles in opposite directions

ASTR 310: Phases of the Moon

Reproduce the geometry of the Earth, Moon and Sun to illustrate the phases of the Moon and to predict rise/set times.

Students hold Moon and Earth balls in a darkened room with one bright, central light to reproduce phases of the Moon, spin Earth to find Moon rise and set for each phase.

Q5: The Moon is full today. If you go outside at noon and the sky is clear, can you see the Moon?

- □ No, you can never see it during the day
- □ No, Moon is below horizon
- □Yes, Moon is up

Assessment

	(2	.0
ASTR 311 concepts	Q		
gravity ₁	1 L2		
spectroscopy 1	3 L1		
curved space	2 4		
black holes	6 8		
expanding Universe 1	2 4 6 9 10		
properties of stars*	5 7		
Αν	√g		
ASTR 310 concepts	Q		
Sun's path	6 7		
phases of the Moon	Q67158930		
human orrery	89		
nature of science 1	3		
craters 1	4 12		
-	2		

extrasolar planets 11Avg

	Ν	Pretest	Std err	Posttest	Std err	Learning
	(pairs)	mean		mean		gain
ASTR 311	48	42.3%	2.7%	62.5%	2.7%	0.33
ASTR 310	122	32.5%	1.4%	64.1%	1.6%	0.46

Discussion and Further Work After drafting learning goals, we identified the goals best addressed by hands-on activities. The learning gains of 0.32 and 0.46 indicates these activities are moderately successful at promoting learning. We continue to improve the activities and the survey we use for the pre- and post-tests. In the future, we turn our attention to transforming the lectures into an active learning environment by using Clickers, Lecture-Tutorials and other in-class activities to engage the students so they can generate their own knowledge.

This work is supported by the Carl Wieman Science **Education Initiative.**

Corr	ect	Respor	nses	(%)		
20	40) 6	0	8	0	100
				pre	etest	t
		-	+		stte	
	_					
				•		