CPSC 211 Course Learning Goals

Move from personal software
development methodologies to
professional standards and

Given an API,
write code that

Identify and evaluate

Read and write

Extend their
mental model of

Work with an
existing codebase,
including reading

. . trade-offs in design and rograms in i and understandin
After this class practices (e.g. create programs | conforms to) g prog) computation i 8
]) > implementation Java using given code, and
students can... that interact with their the API to . from that)
environment (files etc.) and [perform a given decisions for systems advanced developed in augment its
,' task of an intermediate size.| features functionality.
human users according to ask. CPSC111 .
. [Happens only with
standard professional norms). .
assignments]
Programming by
contract Al, A2, A3, A4
Exception handling B1, B5 B1, B6 B2, B3, B4, B5
Streams, 1/0 C3 C2,C3 C1
Testing D1, D2, D3 D4
Software Design E2, E3, E4, E5, E6 E1, E7, ES, E10 E9
Java Collections F3,F8,F11, |F1, F2, F4,F12,F16, [|F3,F6, F7, F10,
Framework F15, F18, F19 [F20 F13, F17, F21
Graphical User
Interfaces G1 Gl G2,G3,G5,G6 |G4
Multi-threaded
programming H6 H4, H5, H6 H1, H2, H3
Recursion 15 11, 14,16 12,13
Implementing basic
collection classes J1, J2,J3

CPSC 211 Topic Learning Goals

Assessed
Topic ID in? |Students can:
Programming |Al write client code that adheres to the contract specified for a class using invariants, preconditions and postconditions
by contract A2 implement a class given a contract specified by invariants, preconditions and postconditions
A3 describe the benefits of programming by contract for client and developer
A4 use assertions appropriately in code
Exception B1 incorporate exception handling into the design of a method's contract
handling B2 trace code that makes use of exception handling
B3 write code to throw, catch or propagate an exception
B4 write code that uses a finally block
B5 write code to define a new exception class
B6 compare and contrast checked and unchecked exceptions
Streams, 1/0 C1 describe stream abstraction used in Java for byte and character input/output
Cc2 write programs that use streams to read and write data
C3 incorporate data persistence in a program using Java's serialization mechanism
Testing D1 compare and contrast blackbox and whitebox testing (at the level of what each type of testing provides)
D2 use blackbox testing with equivalence classes to test a method and from that a suite of test cases
D3 describe how unit testing is applied to a class (describe a hierarchy of tests that you could apply)
D4 write a suite of tests to apply unit testing to a class using JUnit (putting the above into practice with a particular tool)
Software E1 describe the basic design principles of low coupling and high cohesion
Design E2 design a software system (expressed in UML) from a given specification that adheres to basic design principles (Ic and hc)
E3 interpret UML class diagrams to identify relationships between classes
E4 draw a UML class diagram to represent the design of a software system
E5 describe the Liskov Substitution Principle
E6 explain whether or not a given design adheres to the LSP
E7 incorporate inheritance into the design of software systems so that the LSP is respected
E8 compare and contrast the use of inheritance and delegation
E9 use delegation and interfaces to realize multiple inheritance in design (e.g. to support the implementation of multiple types)
E10 identify elements of a given design that violate the basic design principles of low coupling, high cohesion, the LSP
Java Collections [F1 use big-O notation to categorize an algorithm as constant, linear, quadratic or logarithmic time
Framework F2 given two or more algorithms, rank them in terms of their time efficiency
F3 program to the generic List interface including read and use the List API (e.g. use Lists in ways similar to arrays)
Fa compare and contrast ArrayList and LinkedList implementations of the List interface
F6 compare and contrast assignment with various generic collections under specific subclass scenarios
F7 use wildcards appropriately in generic type parameters to enable assignment in sub and super class scenarios
F8 program to the generic Iterator and Listlterator interfaces including reading and using the APIs
F10 read and write code that uses a for-each loop to iterate over a collection
F11 program to the generic Set and SortedSet interfaces inclduign read and use the API
F12 compare and contrast the HashSet and TreeSet classes (benefits of using each, basic run time analysis)
design and implement a class in such a way that it can be used with the Java collections framework (overrides equals in HashCode,
F13 implement the generic Comparable and Comparator interfaces to account for multiple sorting criteria)
F15 program to the generic Map and SortedMap interfaces by reading and using the API
F16 compare and contrast HashMap and TreeMap classes (benefits of using each, basic run time analysis)
F17 write code (solve problems) that uses the generic algorithms provided in the Collections class
F18 program to the generic Queue interface
F19 program to the API of the generic Stack class
F20 identify (in words or through code) appropriate types for collections of data needed in a given software system
F21 write code that implements unidirectional, bidirectional, 1-1 and 1-many associations
Graphical User |G1 describe basic principles of good user interface design (user interface hall of shame)
Interfaces G2 use layout managers to produce a well designed GUI
G3 write code to produce a well designed GUI that includes frames, panels, menus and buttons
G4 describe the event driven model
G5 describe and apply scoping rules that apply to the use of inner classes
G6 write code that uses inner classes (including anonymous inner classes) to handle events raised by GUI elements
Multi-threaded |H1 Describe the multi-threaded programming model including thread scheduler, thread priority, and time slices.
programming [H2 describe the various states that a Java thread can achieve and the events that lead to transition from one state to another
H3 define the terms deadlock, race condition and critical section
H4 identify possible legal traces of a multithreaded program
H5 identify deadlock and race conditions in a multithreaded program
H6 write a thread-safe class using Lock and Condition objects
Recursion 11 trace code that uses recursion to determine what the code does
12 draw a recursion tree corresponding to a recursive method call
13 draw a stack trace of code that uses single and multi-branch recursion
14 write recursive methods
15 compare and contrast iterative and recursive solutions to a problem
16 replace a recursive implementation of a method with an iterative solution that uses a stack to model the run-time stack
Implementing |J1 write code to perform search, insertion and removal operations on a singly or doubly linked list
basic collection |J2 implement a class (e.g., list, stack or queue) that stores data in a linked list
classes J3 implement a class (e.g., list, stack or queue) that stores data in an array

	211 Course LGs
	211 Topic LGs

