CPSC 221 Course Learning Goals

After this course students
can...

Analyze design tradeoffs and
constraints (e.g. through
space/time complexity analysis)
and make appropriate choices in
data structures and algorithms
when solving problems.
(Students care because a good
programmer may not be able to
do this, but a good computer
scientist does -- a good computer
scientist has broader design goals
(e.g. proof of correctness,
resource constraints,
performance and scalability
issues)).

Expand your programming language
repertoire with the addition of C++.
Through learning a new language,
gain experience in identifying and
exploiting high-level properties
across programming languages (as
opposed to language-specific
properties). For example, the use of
general data structures in multiple
languages, the commonalities of
dynamic memory allocation,
parameter passing conventions,
templates, etc.)

Gain an appreciation for the role
of mathematical formalisms
(such as discrete mathematics,
functions, sets, Big-O notation,
proofs, trees, graphs) in
expressing and solving problems
in computer science (e.g. link the
principles of loops, recursion,
and induction to establish
loop/program correctness).

Begin to form a clear conception
of the integration of the topics
seen previously (such as
introductory programming
techniques, recursion, etc) as the
greater science of computers. Be
able to recognize the bigger
picture and how the topics
learned in your courses so far
come together to serve computer
science at large; be able to justify
why you have learned the topics
you have learned so far.

Manipulate data
structures
algorithmically,
without a specific
implementation

Doesn't fit in
available
course goals

Introduction and Motivation,

Foundations Al Al Al
C++ Programming B3 B1,B2,B3 B1,B2
Review of Sets and Functions Cc7 C1,C3,C4,C5,C6,C7 Cc2,Cca
Induction and Recursion D3,D4,D7 D4,D5,D6 D1,D2 D2,D3
Loop Invariants E1,E2
Big-O, Big-Omega, Big-Theta
Complexity F1,F2,F7,F8,F9,F10 F5 F1,F2,F3,F4,F5,F6,F7
NP-Completeness ** (optional) G1, G3, G4
Space Complexity H1,H2,H3 H2
Memory Layout 11,12,13,14 11,12,13,14
Linked Lists (Including Stacks,
Queues, and Deques), Introduction
to Pointers 12,14,16 14,15,16 J1,)8
Insertion Sort, Mergesort, Quicksort
K1,K2,K3 K5
Introduction to Trees and Tree
Traversal L2,L4 L3 L1, L3 L5
Priority Queues, Heaps, Heapsort |M1,M3 M2
Hashing N1,N2,N3,N4,N5 N6 N1 N6
B+ Trees 01,04,05,06,07 03 04,06 02
Counting: Product Rule, Sum Rule,
Inclusion-Exclusion, Tree Diagrams,
Combinations, Permutations P1,P2,P3
Binomial Theorem, Combinatorial
Identities Q1,Q2 Q2
Binomial Distribution and Basic
Probability (new) R1,R3 R2,R3
Pigeonhole Principle S1 S1
Graph Theory: Introduction and
Terminology T1,T2
Graph Representation,
Isomorphism, Graph Connectivity U1,U2** U3
Euler/Hamilton Paths/Cycles** V1,\V2
Graph Traversals W1 W2
Planar Graphs** X1,X2,X3

CPSC 221 Topic Learning Goals

Topic

Students Can

Introduction and Motivation,
Foundations

A

[

Compare abstract and concrete data structures and implications for implementations.

C++ Programming

B

e

Effectively pick up a new programming language on their own similar to the first language of instruction (Java). (e.g., code assignments in C++ with minmal help

B2

Implement basic data structures in the C++ programming language -- the programs (up to several pages long) should effectively use arrays, lists, pointers, recursion, trees, dynamic memory allocation, and
classes in C++.

B3

Analyze C++ programs and functions to determine their algorithmic complexity

Review of Sets and
Functions

C

1

Demonstrate mathematical literacy (competence, familiarity, ability to use to solve problems) in sets, functions, and mathematical symbol:

C

[N)

Be prepared for further computing studies in fields such as database management systems, algorithm analysis, information retrieval, logic/Al courses (binding of symbols), and functional programming.

Cc3

Communicate effectively through set parlance and notation (e.g., be able to translate general problem into rigorous problem statements throughout the course).

c4

Apply sets and functions to the topic areas in the course including (hashing, complexity analysis, counting, and generally supporting exact problem expression throughout the course).

Understand the notion of mapping between sets.

Cé

Prove one to one and onto for finite and infinite sets.

c7

Recognize the different classes of functions in terms of their complexity.

Induction and Recursion

D1

Prove that a Toop invariant holds for a given code or algorithm example.

D2

Describe the relationship between recursion and induction (e.g., take a recursive code fragment and express it mathematically in order to prove it’s correctness inductively)

D3

Evaluate the effect of recursion on space complexity (e.g., explain why a recursively defined method takes more space then an equivalent iteratively defined method.)

D4

Describe how tail recursive algorithms can require less space complexity than non-tail recursive algorithms.

D5

Recognize algorithms as being iterative or recursive.

D6

Convert recursive solutions to iterative solutions and vice versa.

D7

Draw a recursion tree and relate the depth to a) the number of recursive calls and b) the size of the runtime stack. Identify and/or produce an example of infinite recursior

Loop Invariants

El

Take a loop code fragment and express it mathematically in order to prove it’s correctness inductively (specifically describing that the induction is on the iteration variable

E2

In simpler cases, determine the loop invariant.

Big-O, Big-Omega, Big-
Theta Complexity

Define which program operations we measure in an algorithm in order to approximate its efficiency (e.g., number of instructions, steps, function calls, comparisons, swaps, 1/Os, networl
accesses).

Define “input size” and determine the effect (in terms of performance) that input size has on an algorithm

Give examples of common practical limits of problem size for each complexity class.

Give examples of tractable, intractable, and undecidable problems.**

Given a code, write a formula which measures the number of steps executed as a function of the size of the input (N)

Compute the worst-case asymptotic complexity of an algorithm (e.g., the worst possible running time based on the size of the input (N))

Categorize an algorithm into one of the common complexity classes (e.g. constant, logarithmic, linear, quadratic, etc.).

Explain the differences between best, worst, and average case analysis.

Describe why best-case analysis is rarely relevant and how worst-case analysis may never be encountered in practice.

Given two or more algorithms, rank them in terms of their time and space complexity

NP-Completeness **
(optional)

G1

State the basic properties of NP-Complete problems and explain why they are hard to solve computationally

G3

Give examples of NP-Complete problems.

G4

Explain the significance of NP-Completeness to Big-O, Big-Omega, and Big-Theta complexity

G5

Explain the difference between the complexity of a problem and the complexity of a particular algorithm for solving that problem

Space Complexity

H1

Compare and contrast space and time complexity.

H2

Discuss the tradeoffs in algorithm performance with respect to space and time complexity. E.g., Compare and contrast the space requirements for a linked list (single, double) vs. an array-based
implementation.

Compare and contrast the space requirements for Mergesort versus Quicksort.

Memory Layout

Describe general Tayout of program memory (e.g. the Tocations or program, stack, and heap).

Diagram how the stack and heap grow in relation to each other in the context of a code example

Explain how stack overflow may arise as a result of recursion

Explain the low level implementation of methods calls and returns by describing an activation record and how it is pushed and popped from the stack

Linked Lists (Including
Stacks, Queues, and
Deques), Introduction to
Pointers

Differentiate an abstraction from an implementation.

Define and give examples of problems that can be solved using the abstract data types stacks, queues and deques.

Compare and contrast the implementations of these abstract data types using linked lists and circular arrays in C++.

Demonstrate how dynamic memory management is handled in C++ (e.g., allocation, deallocation, memory heap, run-time stack)

Gain experience with pointers in C++ and their tradeoffs and risks (dangling pointers, memory Teaks)

Explain the difference between the complexity of a problem (sorting) and the complexity of a particular algorithm for solving that problen

Manipulate data in stacks, queues, and deques (irrespective of any implementation)

Insertion Sort, Mergesort,
Quicksort

Describe and apply various sorting algorithms; Compare and contrast their tradeoffs.

K2

State differences in performance for large datasets versus small datasets on various sorting algorithms.

K3

Analyze the complexity of these sorting algorithms.

K4

Explain the difference between the complexity of a problem (sorting) and the complexity of a particular algorithm for solving that problen

K5

Manipulate data using various sorting algorithms (irrespective of any implementation)

Introduction to Trees and
Tree Traversal

L1

Determine if a given tree is an instance of particular type (e.g. heap, binary, etc.) of tree

=
N

Describe and use pre-order, in-order and post-order tree traversal algorithms.

Describe the properties of binary trees, binary search trees, and more general trees; and implement iterative and recursive algorithms for navigating them in C++.

Compare and contrast ordered versus unordered trees in terms of complexity and scope of application.

Insert and delete elements from a binary tree.

Priority Queues, Heaps,
Heapsort

Provide examples of appropriate applications for priority queues and heaps.

Manipulate data in heaps (irregardless of any implementation).

Describe the Heapify and Heapsort algorithms, and analyze their complexity.

Hashing

Provide examples of the types of problems that can benefit from a hash data structure.

Compare and contrast open addressing and chaining.

Evaluate collision resolution policies

Describe the conditions under which hashing can degenerate from O(1) expected complexity to O(n).

Identify the types of search problems that do not benefit from hashing (e.g., range searching) and explain why

Manipulate data is hash sturctures both irrespective of implementation and also within a given implementatior

B+ Trees

Describe the structure, navigation and complexity of an order m B+ tree.

Insert and delete elements from a B+ tree.

Explain the relationship among the order of a B+ tree, the number of nodes, and the minimum and maximum capacities of internal and external nodes.

efficiently)

Compare and contrast B+ trees and hash data structures.

Explain and justify the relationship between nodes in a B+ tree and blocks/pages on disk

Justify why the number of I/0Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+ trees).

Counting: Product Rule,
Sum Rule, Inclusion-
Exclusion, Tree Diagrams,

Apply counting principles to determine the number of arrangements or orderings of discrete objects, with or without repetition, and given various constraints.

Use appropriate mathematical constructs to express a counting problem (e.g. counting passwords with various restrictions placed on the characters within).

o
w

Identify problems that can be expressed and solved as a combination of smaller sub problems. When necessary, use decision trees to model more complex counting problems

Binomial Theorem,
Combinatorial Identities

Solve problems using combinatorial arguments and algebraic proofs.

Q2

State the relationship among recursion, Pascal’s Triangle, and Pascal’s Identity

Binomial Distribution and
Basic Probability (new)

R1

Define binomial distribution and identify applications.

R2

Model and solve appropriate problems using binomial distribution.

R

w

Apply basic probability theory to problem solving, and identify the parallels between probability and counting.

Pigeonhole Principle

S1

Define various forms of the pigeonhole principle; recognize and solve the specific types of counting and hashing problems to which they apply

Graph Theory:
Introduction and

T

-

Describe the properties and possible applications of various kinds of graphs (e.g., simple, complete), and the relationships among vertices, edges, and degrees.

T2

Prove basic theorems about simple graphs (e.g. handshaking theorem).

Graph Representation,
Isomorphism, Graph
Connectivity

Ul

Convert between adjacency matrices / lists and their corresponding graphs.

U2

Determine whether two graphs are isomorphic.**

U3

Determine whether a given graph is a subgraph of another.

Euler/Hamilton
Paths/Cycles**

V1

Compare and contrast Euler and Hamilton paths/cycles.

V2

Given an arbitrary graph, determine whether or not a Hamilton path, Hamilton cycle, Euler path, or an Euler cycle exists, and if so, provide an example.

Graph Traversals

W

Perform breadth-first and depth-first searches in graphs.

W

Explain why graph traversals are more complicated than tree traversals,

Planar Graphs**

X1

Describe the properties and possible applications of planar graphs.

X2

Use Euler’s Formula to solve given planar graph problems.

X3

Apply the notion of graph colourability to determine if a k-colouring exists for a particular graph

**Qptional

	221 Course LGs
	221 Topic LGs

