CPSC 111 Course Learning Goals

By the end of the course
students can...

1. Write and modify
code to "express
understanding" of

basic programming

constructs (including
sequential exeuction,
conditional execution,
iteration, arrays,
methods/parameter

2. Read and hand-execute
(trace) provided code to
"express understanding"

of basic programming
constructs and memory
models (including
sequential exeuction,
conditional execution,
iteration, arrays,
methods/parameter

3. Write code to
solve moderately-
difficult problems

(moderately
difficult will be
defined through
example in an

4. Recognize,
create, and
manipulate

various models of
programs

including memory

tracing and UML

5. Explain Java
language features
(e.g. classes,
visibility, fields, and
methods) which
support OO design
principles such as
modularity,
encapsulation,

6. Explain the major
components of a computing
system and how a program

compiles and executes to a non-

computer scientist.

pa.ssmg _O Jec passing, object-orientation appendix) class diagrams abstraction and
orientation and . .]]
. . o and inheritance inheritance.
inheritance principles). .
principles).
AB
Computing Systems (2) ’
Programming Language
?
Basics (4) <D ¢ E, (F?)
G,H G, H,I |
Classes and Objects (3) ’ T
Conditionals (3) J,K L J,K L (J?,K?), L
Designing and Defining
? ?
Classes (4/2) M, N, O, (Q?) (0?),R N, Q O,R M, P
Iteration (3) S, U T S,U T
Arrays (3,1) V, X V, W, X
AA* (not done by everyone who
, Z (Z?)

Sorting (2) teaches course)
Advanced Class Design

8 AB1, AC1, AC3 AB4, AC4, AC5 AD AB2, AB3, AC2,
(3) (AC4?), (AC5?)

AE2, AF AE1

Graphics (2)

CPSC 111 Course Level Learning Goals DRAFT VERSION Feb 2008

Topic ID |Assessed in? |Goals
Students can...
Computing A M1 define and give real world examples of key components of the computer (input, output, processor, memory).
Systems (2) B can distinguish and describe how layers of abstraction are supported in computing problem solving through algorithms, programming languages, assembly, and computer
hardware.
Programming C |M1,M2,F, L, A |apply with basic competence simple programming constructs such as sequential execution, variable typing and declaration, naming, algebraic operations, operation
Language Basics precedence.
(4) D |M1,M2,F, L, A |create programs which translate explicit English problem statements (an algorithm) into short series of sequential Java instructions.
E describe the multiple ways in which a natural language paragraph can be interpreted and contrast to the single way an algorithm can be interpreted.
F explain why a particular numeric type can only represent numbers in a particular range.
Classes and G |M1, M2, F define the relationship between classes and objects.
Objects (3) H M1, M2, F, L, A [read and write code utilizing the API of key Java classes (e.g. String, Scanner).
explain how control flow and data pass on a method call.
| identify specific standard methods like accessors and mutators and describe why these operations are needed for non-primitive data types.
Conditionals (3) |[J M2,F, L A hand-trace and create programs which use if-statement conditionals to model behavior of input-driven programs.
K M2,F, L A utilize Boolean expressions, relational, and logical operators to control conditional execution.
L M2, F, L A utilize block statements, short-circuit evaluation(?), and nested ifs to create code to solve problems in Java.
Designing and M |M1, M2, F, L, A |create a simple class (with instance variables, accessors and setters) utilizing basic components of OO design (including encapsulation, visibility modifiers, and overloading) to
Defining Classes model a real world entity (including it’s actions and state).
(4/2) N [M2,F LA use that class in a simple program.
0O |[M2,F, apply their understanding of references and objects by writing standard constructors and drawing diagrams of memory after an object is constructed.
P explain how encapsulation (as implemented with visibility modifiers) supports data integrity and good interface design.
Q |[M2,F LA apply with more expert competence simple programming constructs such as sequential execution, variable typing and declaration, naming, algebraic operations, operation
precedence.
R describe how reference objects differ from primitive variables and describe problem solving scenarios which are best supported by each.
Iteration (3) S M2,F, LA solve problems by creating code where repeated actions are controlled with looping structures (for and while loops).
T M2, F, L A identify and debug a loop that never stops (an infinite loop).
U [M2,F LA solve problems which requires a loop within a loop where the inner loop iteration does not depend on the outer loop iterator (e.g. to draw a rectangle of stars).
solve problems which requires a loop within a loop where the inner loop iteration does depend on the outer loop iterator (e.g. to draw a triangle of stars).
Arrays (3) V. |M2,F LA solve problems with collections of same-type data using arrays (including primitive type collections (e.g a collection of class grades) and collections of objects (e.g. a collection
of String names or a deck of cards).
W |M2,F, LA apply with more expert competence branching, looping, and nested loops through practice solving problems using arrays and 2-D arrays.
X M2, F, L A solve problems by creating code which require the creation and use of 2-D arrays (e.g. graphics and averaging scores of students and other data that can be stored in matrix
form).
Sorting (2) z F identify a simple sorting algorithm.
AA |F explain that a simple sorting algorithm can be analyzed through simple techniques such as comparison counting and that different sorting algorithms can have different
execution time costs and that the number of elements sorted is important in making these analyses.
Advanced Class |AB1 (M2, F, L, A create codes which require the use of advanced class syntax and semantics including static methods and variables, scoping, primitive and non-primitive parameter passing.
Design (10)
AB2 explain the difference between static and non-static fields and give an example of when each should be used.
AB3 explain the difference between static and non-static methods and give an example of when each should be used.
AB4 given a piece of code, identify the scope of a variable (locals, class-level, or global).
AC1|F, L, (A) create codes which require the use of advanced OO concepts such as inheritance, class hierarchy, and polymorphism.
AC2 explain how inheritance is a form of code re-use that can be valuable in large systems.
AC3 given a parent class and a specification for a subclass, implement the subclass, including method overriding, calls to the super class constructor and calls to the super class’s
version of the overwritten method.
AC4 explain what happens when polymorphic assignment happens.
AC5 explain what happens when a polymorphic method call is made.
AD |F, L, (A) apply with more expert competence class design and usage through practice with programs implementing inheritance, class hierarchy and polymorphism.
Graphics (3) AE1 explain how graphics applications use inheritance and interfaces.
AE2 create codes which require the use of basic graphical user interface APIs in Java.

AF

create codes which utilize an event-driven execution model.

	CP111-1
	Sheet1

	CPSC111.pdf
	CP111-1.pdf
	111 Course LGs

	CP111
	Sheet1

