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Abstract 4 

 5 

One goal of an undergraduate education in mathematics is to help students develop a productive 6 

disposition towards mathematics. A way of conceiving of this is as helping mathematical novices 7 

transition to more expert-like perceptions of mathematics. This conceptualization creates a need 8 

for a way to characterise students’ perceptions of mathematics in authentic educational settings. 9 

This article presents a survey, the Mathematics Attitudes and Perceptions Survey (MAPS), 10 

designed to address this need. We present the development of the MAPS instrument and its 11 

validation on a large (N = 3411) set of student data. Results from various MAPS 12 

implementations corroborate results from analogous instruments in other STEM disciplines. We 13 

present these results and highlight some in particular: MAPS scores correlate with course grades; 14 

students tend to move away from expert-like orientations over a semester or year of taking a 15 

mathematics course; and, interactive-engagement type lectures have less of a negative impact, 16 

but no positive impact, on students’ overall orientations than traditional lecturing. We include the 17 

MAPS instrument in this article and suggest ways in which it may deepen our understanding of 18 

undergraduate mathematics education.  19 
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Introduction  24 

 25 

One primary goal of an undergraduate education in mathematics is to transition students 26 

to more expert-like conceptions of and ways of thinking about mathematics. This is more than 27 

learning the requisite subject content knowledge—students should gain domain-specific ways of 28 

thinking and an appreciation for the place of the subject relative to other academic pursuits. 29 

Schoenfeld [1, p. 341] states that “people develop their understandings of any enterprise from 30 

their participation in the “community of practice” within which that enterprise is practiced.” 31 

Essentially, being in a mathematics course and working with mathematics and mathematicians 32 

serves as an apprenticeship in mathematics. The social and sociomathematical norms of the 33 

discipline are seldom taught explicitly but are nonetheless experienced by the students. It is 34 

through this context that students develop their mathematical understandings, perspectives, and 35 

ways of communicating. It is then desirable to be able to recognize key perspectives, attitudes, 36 

emotions, and epistemological and ontological beliefs—which we refer to collectively as 37 

beliefs—that affect students’ development in mathematics and to identify educational events that 38 

impact these factors. These beliefs are significant in their own right, and also can have a direct 39 

impact on students’ learning.[2]  40 

 41 

Measures of Student Beliefs 42 

 43 

There has been, and continues to be, great interest by researchers in analysing students’ 44 

beliefs and perspectives and attitudes towards mathematics. For example, Petocz et al. [3] 45 

surveyed approximately 1,200 undergraduate students from five countries about their views of 46 



mathematics and how it fits in with their future study and career plans. The authors found 47 

students’ responses were best characterized with a five-level hierarchical framework. The lowest 48 

level, Numbers, centred around viewing mathematics as concerning number and calculation, 49 

whereas the highest level, Life, conceives of mathematics as being a way of thinking integral to 50 

living in the world.  51 

In addition to open-ended surveys, instruments have been developed to assess various 52 

aspects of students’ relationship with mathematics, including attitudes toward, beliefs about, and 53 

anxiety when solving or anticipating a mathematical task.[4,5,6,7] An example of such an 54 

instrument, the Conceptions of Mathematics Survey (CMQ), was developed from qualitative 55 

studies of how students view mathematics as a discipline.[8,9,10] Respondents are given scores 56 

on two scales: fragmented and cohesive. Those students with a fragmented conception of 57 

mathematics view the subject as a collection of disconnected procedures and facts, while those 58 

with a cohesive conceptions tend to view math as an interconnected web of knowledge. Cohesive 59 

conceptions tend to be positively correlated with course grade, while fragmented scores are often 60 

negatively correlated, highlighting the importance of students’ views of a subject in relation to 61 

their academic performance.[9,10,11]  62 

The above surveys share two limiting characteristics: unidimensionality and an absence 63 

of input from mathematicians in the design and subsequent results. Unidimensionality 64 

necessarily limits the range of perspectives intended to be considered in the survey and may lead 65 

to confounded results. For example, mathematicians would presumably score highly on the 66 

cohesive scale of the CMQ and low on the fragmented scale, though, as identified in [12], an 67 

expert number theorist may agree with a statement such as “[f]or me, math is the study of 68 



numbers,” which is intended to contribute to the fragmented scale, but experts in other domains 69 

may disagree.  70 

Data from mathematicians would enable an instrument to be used in expert-novice 71 

studies and can provide insight into exactly what orientations to mathematics are held by 72 

mathematicians. The CMQ, for example, can provide some insight into how a student views 73 

mathematics, but does not necessarily indicate how close this view is to a practising 74 

mathematician's. Conversely, when asked to complete the CMQ as they think their archetypal 75 

students would, mathematicians tend to underestimate their students’ cohesive conceptions and 76 

overestimate their fragmented conceptions.[12] This identifies a disconnect between 77 

mathematicians and their students and highlights the need for an instrument that will consider 78 

both their views concurrently. 79 

 80 

Measures of teacher beliefs 81 

 82 

Not much is known about university instructors’ views of mathematics and how these 83 

views influence teaching practice. There is, however, a large body of literature on the influence 84 

of primary and secondary teachers’ views on their practice. It is known that a teacher’s belief 85 

about the nature of mathematics impacts the way mathematics is presented and 86 

taught.[13,14,15,16] Teachers’ beliefs about mathematics and mathematical activity has a direct 87 

relationship with the sociomathematical norms of the classroom,[17] teachers’ practices and 88 

student learning,[18] and teachers’ goals for learning.[19] 89 

A number of teacher belief surveys have been constructed; for example the Beliefs About 90 

Mathematics and Teaching [20] and the Mathematics Teaching Efficacy Beliefs Instrument.[21] 91 



Noticeably absent from these studies are the students’ perspectives. If beliefs about mathematics 92 

affect a teacher’s practice, do these benefit those students with similar beliefs? Are those 93 

students with different beliefs disadvantaged?  94 

 95 

Novice-expert studies 96 

 97 

The studies cited above explore students’ and teachers’ perspectives of mathematics 98 

separately. If we start with the assumption that an undergraduate education is intended, at least in 99 

part, to develop in students more expert-like perspectives toward a discipline, then there is a need 100 

to not only identify student and teacher/instructor perspectives, but also how these are positioned 101 

relative to each other.  It is known, for example, that mathematical novices and experts approach 102 

mathematical tasks in fundamentally different ways.[22,23,24] These approaches are informed 103 

by a number of factors in addition to and distinct from knowledge gained from experience with 104 

mathematical situations, including beliefs about the nature of mathematical activity. This 105 

suggests that an improvement in students’ expert-like behaviour in mathematics may follow a 106 

shift in their views of mathematics.  107 

In intervention studies, or studies of curriculum change in general, there is a need to 108 

assess the students’ conceptions of the field to determine if these shift towards those of experts. 109 

One approach to this is to quantify students’ conceptions and contrast these results to those of 110 

experts in the field. This has been performed in a number of settings through, for example, 111 

asking “what is mathematics?”,[25] identifying a desired direction of change,[26] or the creation 112 

of a beliefs instrument.[27] Taken together, these studies acknowledge that an expert-like 113 



perspective is not a singular trait, identifying a need for a multi-dimensional novice/expert 114 

instrument.  115 

Perhaps the most notable expert/novice instruments in undergraduate STEM education is 116 

the family of Colorado Learning Attitudes about Science Surveys (CLASS). Initially developed 117 

for physics,[28,29] CLASS surveys have extended to biology,[30] chemistry,[31] earth and 118 

ocean sciences,[32] and computer science.[33] Each of these surveys are multidimensional, 119 

being comprised of a number subscales that quantify aspects of expert-like perspectives. The 120 

questions for the original physics CLASS were distilled from interviews with physics students 121 

and instructors and the resulting category structures were developed with rigorous statistical 122 

methods.[28,34] The survey was completed by physicists and each question was checked for 123 

expert consensus. Student responses are marked relative to this consensus: +1 for a response in 124 

the same direction (ie. agree/disagree) as the expert consensus and 0 otherwise. These scores 125 

constitute the students’ expert-like orientations in each of the subscales and an overall expertise 126 

index. Similar approaches were employed in the development of the subsequent CLASS surveys.  127 

Results established through the use of CLASS surveys include demonstrating correlations 128 

between expert-like beliefs on the physics CLASS and self-rated interest in physics, variation in 129 

responses according to degree year, intra-year shifts away from expert-like conceptions, and 130 

program-level selection of students with expert-like orientations.[28,29,30,35,36,37] 131 

 132 

The Current Study 133 

 134 

Previous work has shown that expert/novice instruments must be made domain-specific. 135 

If the questions are too general—asking about overall perceptions of science, for example—136 



students are unable to commit to an answer. For example, Adams, et al. [28] report that, when 137 

asked “Understanding science basically means being able to recall something you’ve read or 138 

been shown,” students tend to respond with, “it depends on whether you mean biology or 139 

physics.” Therefore, the existing CLASS survey are not readily applicable to undergraduate 140 

mathematics.  141 

The current article presents an adaptation of the CLASS to undergraduate mathematics: 142 

the Mathematics Attitudes and Perceptions Survey (MAPS). We begin by presenting the 143 

categories that emerged through exploratory and confirmatory factor analyses of a large MAPS 144 

data set. We then review the literature supporting the educational relevance of the categories 145 

identified in our MAPS instrument. Next, we discuss the development of MAPS and present 146 

some initial observations on the relationship between MAPS scores and course grades. We 147 

conclude by discussing ways in which MAPS can help uncover and improve students' 148 

experiences in mathematics courses. 149 

 150 



MAPS Categories 151 

 152 

 Expert-like behaviour is multifaceted and complex, making a succinct description of it a 153 

difficult task. As we present in our Methods section, seven factors of expert-like behaviour in 154 

and views of mathematics have emerged from our development and testing of the MAPS 155 

instrument: 1) confidence in, and attitudes towards mathematics (Confidence), 2) persistence in 156 

problem solving (Problem Solving), 3) a belief about whether mathematical ability is static or 157 

developed (Growth Mindset), 4) motivation and interest in studying mathematics (Interest), 5) 158 

views on the applicability of mathematics to everyday life (Real World), 6) learning mathematics 159 

for understanding (Sense Making), and 7) the nature of answers to mathematical problems 160 

(Answers). We freely admit that this list is not exhaustive, nor will or should it be. We do, 161 

however, think that these seven factors capture a representative picture of expert-like approaches 162 

to and views of mathematics. What follows is a brief review of the literature concerning each of 163 

our factors.  164 

 165 

Confidence in mathematics 166 
 167 

 Representative statement (MAPS #17): “No matter how much I prepare, I am still not 168 

confident when taking math tests.” 169 

 Confidence in mathematics is a person’s perceived ability to successfully engage in 170 

mathematical tasks. Confidence is known to affect a student’s willingness to engage with a task, 171 

the effort they expend in working the task, and the degree to which they persist when 172 

encountering setbacks.[38] Self-reported confidence level can also aid in identifying 173 

understanding and misconceptions. Hasan et al. [39] report on a study in which students recorded 174 



their confidence in their responses to multiple choice physics questions. The resulting Certainty 175 

of Response Index (CRI) scores were compared to question correctness. Those questions with a 176 

high CRI and high average correctness are likely to be widely understood by the class, whereas 177 

those with a high CRI and low average correctness indicate widespread misconceptions; see also 178 

[40] for a refinement of the approach in [39]. The approach of having students report their 179 

confidence in their responses has proven useful in understanding the complex relationship 180 

between performance on conceptual and procedural mathematical tasks: the students in the study 181 

of Englebrecht et al. [41] had no more misconceptions about concepts than they did about 182 

procedures. 183 

 In a study of first-year engineering students, a regression analysis of student performance 184 

revealed a significant correlation between confidence level and course grade.[42] A similar result 185 

was obtained in [43] for achievement and mathematics self-efficacy—a term often used 186 

interchangeably with confidence. Perhaps the most noteworthy result in [43] is that confidence 187 

was a better predictor of continuation in a mathematics-intensive program than either 188 

performance or achievement. At the same time, achievement can have a positive influence on 189 

confidence. This creates a complex interplay between confidence and achievement: higher 190 

achievement leads to greater confidence which leads to affording more opportunities to achieve. 191 

Confidence is therefore a dynamic, rather than static trait that is shaped and influenced by the 192 

educational setting.  193 

 194 

195 



Persistence in Problem Solving 196 

 197 

 Representative statement (MAPS #24): “If I get stuck on a math problem, there is no 198 

chance that I will figure it out on my own.” 199 

How students approach solving a non-routine mathematical problem (i.e., one where they 200 

can “get stuck”) is just as important as their ability to solve that problem. It is now well 201 

established that experts and novices differ in how they solve problems. Experts have a wealth of 202 

knowledge—in terms of knowledge of facts and definitions, but also of problem types and 203 

solution strategies—and this aids in their problem solving. Experts also attend to different 204 

features of problems than novices. In a replication of the seminal work of Chi, Feltovich, & 205 

Glasser,[44] Schoenfeld and Herrmann [22] had mathematics problem solvers, both expert and 206 

novice, group problems from a given set according to their perceived similarity. Experts grouped 207 

the problems according to their deep structure, that is, according to the underlying principles 208 

needed to solve them. Novices tended to group the problems according to their surface structure, 209 

concerning superficial features of the problem setup. Moreover, experts engage metacognitive 210 

skills while solving problems, monitoring their own progress, looking for relevant choices 211 

among their broad set of known solution strategies, and willing to abandon strategies when they 212 

are judged to be no longer applicable. Lacking these various aspects of expertise, novices are 213 

more likely to attend to surface features and thus identify inappropriate strategies, then apply 214 

those inappropriate strategies with little or no reflection, and (prematurely) feel that their options 215 

are exhausted.[1] We may thus consider perseverance in problem solving as a relatively distinct 216 

from issues of anxiety or laziness and more in terms of the ability to select appropriately from a 217 



sufficiently large set of strategies and to continue selecting and attempting strategies based on 218 

one’s progress. 219 

 220 

Growth Mindset 221 

 222 

Representative statement (MAPS #5): “Math ability is something about a person that 223 

cannot be changed very much.” 224 

 This category rates students’ belief about whether mathematical ability is innate or can be 225 

developed. Those with a fixed mindset believe that ability is not learned, rather being an intrinsic 226 

property of the person. This fixed ability changes little, if at all, even in educational settings. A 227 

growth mindset, on the other hand, recognizes that abilities are not innate and can be acquired 228 

and improved consciously and effortfully. The current consensus in various scientific disciplines 229 

is that intellectual ability is not fixed and can be developed, even in the case of those with 230 

extreme ability.[45] 231 

 Though the concept of a fixed/growth mindset has been present in the educational 232 

literature for decades,[46] it was the popular account of Dweck [47] that brought the effect of 233 

mindset on educational outcomes to the fore. Dweck [47] estimates that 40% of primary and 234 

secondary school students in the United States have a fixed mindset, 40% have a growth 235 

mindset, and 20% have a mixed perspective. Mindset, both the teacher’s and students’, is known 236 

to have a profound influence on educational achievement. Students with a fixed mindset tend to 237 

acquiesce after experiencing setbacks. They disengage from learning with an acknowledgement 238 

that their efforts will not produce results. Growth mindset students, however, are more willing to 239 



redouble their efforts in the face of a challenge; they believe that underachievement can be 240 

rectified with greater effort.  241 

 Teacher mindset is known to affect student achievement through the implicit or explicit 242 

structuring of the educational setting. Perhaps the most visible manifestation of teacher mindset 243 

is in the practice of “ability grouping”. Students are identified as having a high or low ability and 244 

segregated accordingly, often physically separated. The teacher then creates differentiated 245 

educational tasks for the groups. This practice is not intrinsically detrimental—perhaps the 246 

groups differ in their prior educational experiences and have different aggregate skill sets—but 247 

in practice students perceive ability grouping as separating the “smart” from the “dumb”.[48] 248 

This grouping not only negatively affects the lower ability group, but can hinder the progress of 249 

the higher ability students.[48,49,50,51] 250 

 Research on mindset has been extensively conducted in mathematics education; see 251 

[52,53] for brief reviews. Most importantly, interventions intended to shift mindset from fixed to 252 

growth have shown to be effective in mathematics education.[52,53]  253 

 254 

Interest in mathematics 255 

 256 

Representative statement (MAPS #32): “I only learn math when it is required.” 257 

 This scale quantifies students’ interest in engaging with mathematics. The literature on 258 

interest as a psychological construct is vast and diverse and has come to encompass or overlap 259 

with other constructs such as attention and surprise.[54] Here we use a restricted notion of 260 

interest: a student’s active willingness to engage in mathematical situations. 261 



Interest may not have a direct effect on academic achievement in a particular course but 262 

may affect overall academic achievement in mathematics by influencing a student’s selection of 263 

mathematics courses. For example, Köller and Baumert [55] found no correlation between 264 

student interest and Grade 7 and 10 course achievement, but did find that interest was a predictor 265 

of advanced course selection. This, in turn, affected overall achievement in high school 266 

mathematics: interest early on influenced course selection which affected preparedness for Grade 267 

12 mathematics. The authors also found that achievement correlated with interest: those students 268 

with greater mathematics grades expressed a greater interest in mathematics.  269 

 270 

Relationships between mathematics and the Real World 271 

 272 

Representative statement (MAPS #15): “Reasoning skills used to understand math can be 273 

helpful to me in my everyday life.” 274 

 275 

 The transference of domain-specific knowledge to novel situations, either in or outside 276 

that domain, is a main goal of all education. Transference has been an especially sticky issue in 277 

mathematics education and has motivated restructurings of a number of K-16 mathematics 278 

curricula internationally to include more authentic, contextualized problems. The idea being, if 279 

students learn mathematics through more contextualized problems the more they will recognize 280 

connections between mathematics and other domains. Ultimately this is hoped to improve 281 

transference. Though seeing these connections may not directly impact a student’s academic 282 

outcome in mathematics, we recognize the importance of connection-making. This category is 283 



intended to quantify a student’s ability to recognize connections between mathematics and other 284 

contexts.  285 

 Another use of contextualized problems in mathematics education has been to motivate 286 

students to deepen their study. In this regard, if an intervention improves a student’s ability to 287 

make connections to authentic situations, it may also improve their motivation to study 288 

mathematics and have longer-term effects on their academic achievement in mathematics.  289 

 290 

Sense Making 291 

 292 

Representative statement (MAPS #11): “In math, it is important for me to make sense out 293 

of formulas and procedures before I use them.” 294 

 This category is intended to quantify students’ perspectives on the nature of their 295 

personal mathematical knowledge. Students tend to structure and apply their mathematical 296 

knowledge in two broad ways: as certain tools to solve learned problem types or as a coherent 297 

body of knowledge that can be interpreted and applied equally to known and novel 298 

problems.[8,9,10]  299 

 Extensive research on how students approach acquiring and structuring knowledge has 300 

been performed at the tertiary level. In one of the first studies in this vein, Marton and Säljö [56] 301 

found that students took two qualitatively different approaches to learning a given text. The 302 

surficial approach involved memorizing what the students identified as key, examinable 303 

material. Students who took a deep approach attempted to see the ideas present in the text and to 304 

relate these to their existing knowledge. Those who took a surficial approach had a poor 305 

recollection of the text compared with those who took a deep approach. It must be noted that 306 



approaches to study are not static characteristics of students. Rather, a student will adopt a given 307 

approach to study based on any number of factors—their interest, prior knowledge, the tasks they 308 

experience in the educational situation, among others; see [57,58] for extended reviews.  309 

These surficial/deep categories are known to relate to overall academic achievement, but 310 

exactly how is a matter of debate.[59,60] The general trend is that surficial approaches are 311 

negatively, while deep approaches are positively, correlated with course grade.[61] In the context 312 

of undergraduate mathematics, Maciejewski and Merchant [11] found that how study approaches 313 

correlate with course grade depends on the course emphasis. Essentially, those courses that 314 

emphasize reproduction of procedures do not discourage surficial approaches and only slightly 315 

encourage deep approaches. Courses with higher-level tasks discourage surficial approaches. The 316 

lesson here is that how a student acquires and structures knowledge matters to their academic 317 

achievement and this structuring of knowledge is influenced by the educational setting.  318 

 319 

The Nature of Answers 320 

 321 

Representative statement (MAPS #9): “I expect the answers to math problems to be 322 

numbers.” 323 

 This category characterizes students’ views on the nature of solutions to mathematics 324 

problems. Students may view answers in mathematics as being either right or wrong and the 325 

solutions supporting these answers as having a certain degree of rigidity. These views can affect 326 

students’ conceptions of mathematics and ultimately their achievement in mathematics. 327 

 For example, in a series of interviews with undergraduate students, Crawford, Gordon, 328 

Nicholas, and Prosser [8] found two prevailing perspectives on the nature of mathematics. The 329 



fragmented view is one where mathematics is perceived as a collection of facts with little 330 

underlying structure. A cohesive view acknowledges the interconnectedness of mathematical 331 

ideas. This result informed the creation of the Conceptions of Mathematics Questionnaire that 332 

assigns respondents values on fragmented and cohesive scales.[9,10] These scores are known to 333 

correlate with students’ approaches to studying mathematics and their academic outcome in 334 

mathematics: a fragmented view correlates to a surficial approach to study and lower grades, 335 

while a cohesive view correlates to a deep approach and higher grades. 336 

 337 

 338 

Methods  339 

 340 

MAPS was adapted from the CLASS-Phys instrument using a similar process to that used 341 

to adapt CLASS-Phys to CLASS-Chem and CLASS-Bio.[30,31] Statements from the CLASS-342 

Phys were modified initially simply by replacing the word “physics” with the word “math.”  343 

Statements were then modified, added and dropped based on the results of student and faculty 344 

interviews, as well as whether statements could achieve expert consensus and satisfactory factor 345 

analysis results. The initial version of MAPS was developed in Fall 2010, and piloted with 346 

students in both Fall 2010 and Spring 2011. It then underwent several iterations of revision, with 347 

subsequent versions being administered in Fall 2011/Spring 2012 and Fall 2012/Spring 2013. 348 

The current version of MAPS was then administered in Fall 2013 and Fall 2014. A final factor 349 

analysis and model confirmation were performed on this latest version of MAPS to establish the 350 

categories listed here. Last, reliability and concurrent validity—patterns in course levels and 351 



correlations with course grades—were measured for the final version of MAPS. This 352 

development process is summarized in Figure 1. 353 

<Figure 1 here>354 

 355 

Pilot Runs 356 

 357 

Each version of the survey was administered to students using an online survey system. 358 

Respondents were given unlimited time to complete the survey, but typically completed it in less 359 

than ten minutes. Depending on the course, completion of the survey was either entirely 360 

voluntary and anonymous, or it was non-anonymous and carried a very small participation credit 361 

(less than 1%) towards their course grade. As for the CLASS-Phys instrument, our 362 

administration of MAPS contained a “filter statement,” that instructed students to respond 363 

“Agree” in order to verify that students were reading the statements. The student’s response data 364 

was discarded if he or she did not answer “Agree” to this statement. 365 

 366 

Student Interviews 367 

 368 



 A total of 19 students were interviewed at two different time points during the 369 

development of MAPS. Five students were interviewed on version 1 in Summer 2011, and 14 370 

students were interviewed on version 3 during Fall 2012. During these interviews, students read 371 

each statement aloud to the interviewer, and gave their response choice from the 5-point scale 372 

along with an explanation for their response. In most cases, students freely supplied an 373 

explanation for their response, but when they did not the interviewer would prompt them to 374 

explain their choice. The purpose of these interviews was to ensure that the wording and 375 

meaning of the statements were clear to students and that their responses agreed with their verbal 376 

explanations. In addition, these validation interviews were to ensure that responses that agreed 377 

with the expert orientation were indeed due to expert-like attitudes and perceptions and that 378 

novice orientation responses were indeed due to novice-like attitudes and perceptions. 379 

The student interviews on version 1 in Summer 2011 resulted in minor rewordings of 380 

three statements that students found to be unclear or ambiguous. The more extensive validation 381 

interviews on version 3 in Fall 2012 resulted in dropping five statements from the survey, 382 

because students did not interpret the statement in a consistent way or because their response 383 

choice did not agree with their verbal explanation. As an example, we dropped the statement “If I 384 

get stuck on a math problem on my first try, I usually try to figure out a different way that 385 

works” because we found that students would agree with this statement for a range of possible 386 

reasons, that did not necessarily correspond to an expert-like attitude. For instance, some 387 

students would interpret “a different way” to include soliciting help from friends or looking in 388 

books or on the web; other students would interpret it to mean working alone. By contrast, others 389 

explained agreement by reasoning: “well, I have no other option than to try again.” 390 



 391 

Expert Feedback 392 

 393 

 We solicited feedback from mathematics experts at two time points. First, after the initial 394 

version of MAPS was drafted and piloted with students in Fall 2010/Spring 2011, we invited a 395 

group of 17 experts (6 mathematics faculty, 1 postdoc, and 10 graduate students) to a focus 396 

group on MAPS. At the start of the session, each participant completed the survey on paper and 397 

we collected it. We then proceeded through a guided discussion about the goals of the survey, the 398 

proposed groupings of statements, and the individual statements themselves. In addition, 399 

participants were invited to provide further feedback in written form at the end of the session. 400 

From this first set of expert feedback we found that experts had differing opinions on many of 401 

the questions regarding approaches to learning mathematics (eg. “When I solve a math problem, 402 

I find an example that looks like the problem given and follow the same steps.”)  As a result, 4 403 

questions about approaches to learning mathematics were removed from the survey. In addition, 404 

the group of experts suggested several attitudes that were not included in the survey. These 405 

mathematicians felt most strongly that such an instrument should include questions probing 406 

students’ interest in the subject and confidence in solving mathematics problems and/or anxiety 407 

when doing exams. For this reason, we drafted 6 entirely new statements that were then piloted 408 

in the next version of the survey. (eg. #17 on the final version: “No matter how much I prepare, I 409 

am still not confident when taking math tests.”)  410 

We also individually interviewed 10 mathematics faculty in Summer 2012 on version 2 411 

of the survey. The interview process mirrored that of our student validation interviews, in that 412 

faculty were asked to read the statements aloud, give their response choice, and explain the 413 



reasoning for their response. As with the student interviews, the purpose of these interviews was 414 

to ensure that the wording and meaning of the statements was clear to experts, and that their 415 

chosen response agreed with their verbal explanation. The purpose of this stage was to ensure 416 

that MAPS assesses attitudes and perceptions that are of value to experts, and also to allow 417 

faculty an opportunity to provide feedback on the individual statements. As a result of these 418 

interviews, we reworded four statements and dropped nine additional statements due to either 419 

unclear wording, lack of value to the experts who would purportedly use MAPS, or poor 420 

observed loadings in the exploratory factor analysis.  421 

 422 

Expert Consensus 423 

 424 

 After completing validation with students in Fall 2012, in Fall 2013 we invited all 425 

members of the mathematics department at the University of British Columbia to complete the 426 

survey. A total of 58 responses were collected, 36 from faculty members which comprise our 427 

pool of expert responses. The major academic interests of these faculty members are: pure 428 

mathematics (N = 20), applied mathematics (N = 9), teaching focus (N = 3), other (N = 4), for a 429 

total of N = 36. 430 

We used these 36 expert responses to determine whether there was expert consensus on 431 

each MAPS statement. Statements with greater than 25% neutral responses, and those with less 432 

than 80% agreement when the neutral responses were removed, were considered to not have a 433 

consistent expert view. For all but 6 statements, there was a consistent expert response, that was 434 

then characterized as the “expert response” and used to define the expert view.   435 



Four statements did not achieve expert consensus and were dropped from subsequent 436 

versions of MAPS. These statements all had less than 80% agreement among faculty, after 437 

removing the neutral responses. These statements and the agree/disagree proportions are: 438 

1. “I study math to learn things that will be useful in my life outside of school” 439 

(51.7%/48.3%)   440 

2. “To understand math, I sometimes relate my personal experiences to the topic being 441 

studied” (55.6%/44.4%)  442 

3. “I find it difficult to memorize all the necessary information when learning math” 443 

(42.9%/57.1%)   444 

4. “Doing math puzzles is very interesting for me.” (76.7%/23.3%) 445 

It is interesting to note that the first two of these statements suggest that, in contrast to CLASS-446 

Phys, experts do not uniformly relate the mathematics they learn to their personal life, since 447 

these questions had a nearly even agree/disagree split.  448 

Two additional statements, MAPS #22 and #31 in the final version, did not achieve 449 

consensus, but have been retained in the survey because they provide valuable information about 450 

the mindset (growth vs. fixed) of the student population. These statements had too large a 451 

proportion of neutral responses, 36.1% and 30.6% respectively, in the expert pool to achieve 452 

consensus. In addition, even after removing the neutral responses the experts were split on 453 

whether they agree or disagree with statement 31, with 40% of experts agreeing and 60% 454 

disagreeing with this statement. Since the mindset of students is an important factor in their 455 

approach to learning and success in a course, but is not necessarily an agreed-upon subject 456 

among mathematicians,[62] these two statements were retained in the survey but are not scored 457 

as part of the expertise rating. 458 



Among those statements with sufficient expert consensus as described above, there was a 459 

mean consensus (after Neutral responses removed) rate of 94% and a mean Neutral response of 460 

9%. 461 

In what follows, a student response for a statement was scored as 1 if the student agreed 462 

with the expert direction (e.g., if the expert consensus was to disagree with the statement, 463 

students answering “Strongly Disagree” or “Disagree” would score 1 for that statement), or 0 464 

otherwise, meaning either “Neutral” or the opposite direction of the experts. 465 

 466 

Student data 467 

 468 

The majority of the student data comes from first and second year courses at a large, 469 

research-based Canadian university that attracts high-performing students both locally and from 470 

abroad. Data from a separate institution, a medium-sized American university drawing primarily 471 

from the local geographical area, was collected from a variety of students, including pre-service 472 

elementary and secondary teachers, college algebra, and calculus students, was also included in 473 

the analysis and later used as part of the reliability verification. Responses were collected using 474 

online and paper surveys, with some instructors offering extra credit for completion of the 475 

instrument. The types of courses that comprise the dataset are presented in Table 1. 476 

 477 

Type of Course Number of Courses Number of Students Notes 

Differential Calculus 
(“Calculus 1”; First-
year) 

4 1647 
 

200-600 each from 
versions tailored to 
Life Sciences, 
Physical Science & 
Engineering, 



Commerce & Social 
Sciences, and a two-
semester (double the 
usual time) version 

Integral Calculus 
(“Calculus 2”; First-
year) 

3 990 333-600 each from 
versions tailored to 
Life Sciences, 
Physical Science & 
Engineering, 
Commerce & Social 
Sciences 

Multivariable 
Calculus (“Calculus 
3”; Second-year) 

2 261 
 

 

Introductory Proof 
(Second-year) 

1 83  

UCA Math 18 430 Different institution 
and population. 

Total  3411  

 478 

Factor Analysis 479 

 480 

Our process of uncovering the factor structure underlying the MAPS survey began by 481 

dividing student responses into two groups, uniformly at random. The first group of student data 482 

(N = 1705) was used for an exploratory factor analysis and the second (N = 1706) for a 483 

confirmatory factor analysis. For an accessible introduction to factor analyses, see [63].  484 

The first step in the exploratory factor analysis phase was to remove from the data set 485 

students who had at least 80% of the same responses as the expert consensus; for the purposes of 486 

uncovering a factor structure, the responses from such students are so high across potential 487 

categories that they would mute differences between factors. In all, 118 responses were removed, 488 



leaving 1587. This set was determined to be suitable for factor analysis as it provided a ratio of 489 

51 responses per statement and a high Kaiser-Meyer-Olkin (KMO) factoring adequacy value of 490 

0.88. The scree plot and parallel analysis for this data suggested an eight-factor structure; based 491 

on this the routine was run for 7, 8, and 9 factors looking for stable patterns in factor groupings, 492 

using the oblique rotation “oblimin” in attempting to accentuate categories of statements while 493 

accepting that factors would not likely be orthogonal in this type of data.[64] Loadings were 494 

computed using the fa.poly() function from the psych package of the statistical software R; this 495 

particular method uses the polychoric correlation matrix for the variables, which is more 496 

appropriate for dichotomous variables, recalling that all responses had been scored as 0 or 1 by 497 

this point. When restricting our category choices to contain at least three statements loading at 498 

least 0.34 on a factor, we arrived at a model with 7 such categories where the groupings made 499 

statistical sense and were identical or at least similar across the 7, 8, and 9 factor versions of the 500 

routine. Statement 27 (“I think it is unfair to expect me to solve a math problem that is not 501 

similar to any example given in class or the textbook, even if the topic has been covered in the 502 

course”) did not qualify for any categories under these conditions, but has been retained in the 503 

final instrument as part of the overall “Expertise” score. Finally, we attached category names to 504 

the factors (like "Confidence" and "Interest") based on the themes we could identify and how 505 

they matched with existing constructs in the literature.  506 

 507 

Confirmatory Factor Analysis and Reliability 508 

 509 

We combined the subscales identified in the exploratory stage with the set of expert-510 

consensus statements as an additional large category to create a structured model for 511 



confirmation. A confirmatory factor analysis was performed with the data not used in the 512 

exploratory phase (N = 1706) using the cfa() function of the “lavaan” R package, version 0.5-513 

18;[65] we note that this data set still included “expert” student respondents.  Key indicators of 514 

model fit are the 2 value for model fit for which we report a value of 2  = 10221, the Root 515 

Mean Square Error of Approximation (RMSEA) with a value of 0.034 and 90% confidence 516 

interval of [0.032, 0.036], the Standardized Root Mean Square Residual (SRMR) with a value of 517 

0.032, and comparative indices: Comparative Fit Index (CFI) of 0.924 and Tucker-Lewis Index 518 

(TLI) of 0.906.  These all suggest a good model fit for the combined pool of responses. 519 

 520 

The confirmation routine was also attempted with specific course populations, those with 521 

at least 100 respondents in the same course, within the full data set, representing the diversity of 522 

the data that went into the model.  Similar fit numbers to those above emerged in all cases. 523 

With the full pool of student data (N = 3411; includes the “expert” student responses), we 524 

found a Cronbach’s alpha value of 0.87 (95% confidence interval [0.86, 0.88]) for the whole 525 

instrument, without the filter statement, indicating good reliability.  Alpha values for the 526 

categories ranged from 0.55 to 0.70, which are lower than that for the entire instrument. This is 527 

likely due to the small number of items in most categories. 528 

 529 

 530 



 531 

Results 532 

 533 

In this section we report highlights from the MAPS data we have collected to date. The 534 

intention here is to identify common or expected trends in MAPS data. These trends may help 535 

interpret and frame results from subsequent MAPS implementations. 536 

 537 

Overall MAPS averages 538 

 539 

The first result is the overall MAPS category averages and distributions from our largest 540 

data cohorts, first and second year undergraduate mathematics courses, partitioned into four 541 

student groups: i) Calculus 1 with no previous calculus experience (Calc1-N); ii) Calculus 1 with 542 

previous calculus experience (Calc1-Y); iii) Calculus 3, second-year multivariable calculus 543 

(Calc3); and iv) second-year introduction to proof (IntroProof). These results are reported in 544 

Figure 2. The ranges for the individual-level overall expertise index are significant: some 545 

students had perfect agreement (an index of 1) and perfect disagreement (index of 0) in almost 546 

all student groups.  547 

Many of the observed trends are not unexpected. In all categories, Calc1-N students have 548 

the lowest means, while IntroProof students have the highest. This is significant for all the 549 

categories except for Mindset, where no significant differences between the student groups are 550 

observed. IntroProof students had the greatest expert-like orientations to mathematics likely 551 

because the course was taken almost exclusively by mathematics and statistics majors. This is in 552 

contrast to first year calculus, where math majors constitute only a small fraction of all 553 



enrollments. A previous longitudinal CLASS study in physics corroborates this observation: 554 

physics degree recipients tend to have expert-like orientations to physics early on in their tertiary 555 

physics education.[36]  556 

 557 

<Figure 2 here>558 

 559 

 560 

Correlations between MAPS scores and course grades 561 

 562 

Next, we match the aggregate data, partitioned by course type as above, with course 563 

grades to identify correlations between MAPS subscales and grades. These correlations are 564 

presented in Figure 3. Course grades were determined in a similar manner within each course 565 

grouping, depending largely on traditional written exams in all cases, with some variety in exam 566 



setting depending on the specific instructors involved. While a thorough analysis has not been 567 

completed, the types of questions on the exams for the participating courses are similar to those 568 

reported in [11]. 569 

Of all categories, Mindset had the lowest correlations with grades across all groups and 570 

three of the four correlations, Calc1-Y, Calc3, and IntroProof, are not statistically significant. All 571 

other correlations are significant at the p < 0.01 level except for three in the IntroProof group: 572 

Confidence is significant to p < 0.05 while Real World and Sense Making are not significant. 573 

These null results are possibly due to the small IntroProof sample size (N = 83).  574 

The first observation of the MAPS/course grade data is that the overall expertise index is 575 

correlated with course grade in each of the course groupings. These range from r = 0.29 for the 576 

Calc1-Y group to r = 0.37 for IntroProof.  577 

The second is that the confidence subscale is the most highly correlated with course 578 

grades among all the subscales, ranging from r = 0.23 for IntroProof to r = 0.44 for Calc3. 579 

Persistence and Interest are also important predictors of course grades across all groups. Sense 580 

Making and Answers exhibit low correlations with course grades, but this may be, as identified 581 

in [11], due to lower-level, service mathematics courses neither discouraging surficial 582 

approaches nor encouraging deep approaches to learning. Upper-level courses, like the 583 

IntroProof course in this study, tend to emphasize deeper approaches to learning. This may 584 

account for the relatively high observed correlation between the Answers category and course 585 

grades in the IntroProof group. 586 

 587 



<Figure 3 here>588 

 589 

Academic year trends 590 

 591 

The third result concerns differences in start and end of year MAPS scores. Students 592 

enrolled in a first year, one semester differential calculus course wrote the MAPS survey in 593 

September and those completing the follow-up integral calculus course wrote the MAPS in 594 

April. Those students who completed both of these surveys (N = 346) comprise the cohort for the 595 

following analysis. September and April means are presented in Figure 4. All MAPS categories, 596 

including the expertise index, saw declines over the academic year. Put differently, students 597 

enrolled in a first year calculus course sequence move away from expert-like orientations to 598 

mathematics over the duration of the academic year. This result is consistent with results from all 599 

CLASS-type surveys in other disciplines.[28,29,30,31,32,33] We are not able to elaborate on 600 



why the data exhibit these shifts, though we suspect that the nature of first year mathematics 601 

courses, with their emphasis on the reproduction of procedures, solving low-level, inauthentic 602 

problems, and a lack of emphasis on deeper approaches to learning is the cause.[66,11,12] 603 

 604 

<Figure 4 here>605 

 606 

 607 

The effects of interactive engagement on MAPS scores 608 

 609 

The fourth result comes from a control-group study of the effects of classroom “flipping” 610 

in a first-year, first-semester calculus course for students enrolled in life sciences programmes. 611 

The course was divided into two treatment conditions: flipped, where class time was devoted to 612 

interactive engagement activities, and traditional, with transmission-style lectures. For further 613 



details on the flipping implementation, see [67]. The pre/post data are presented in Figure 5. 614 

Scores in each of the MAPS categories declined over the semester in both treatment conditions. 615 

This is in line with the results reported above. However, the scores in the flipped condition 616 

declined less than those in the traditional condition (NFlipped = 209, MFlipped = 51.64, NTraditional = 617 

115, MTraditional = 46.34, t(223) = 2.44, p = 0.01, d = 0.29). This somewhat peculiar result 618 

corroborates CLASS-type results from interactive engagement studies in physics—it seems that 619 

interactive engagement teaching methods do less harm to students’ expert-like orientations.[68] 620 

A comparison between pre/post differences for the treatment and control groups is 621 

presented in Figure 5. In each category, except Mindset and Confidence, the difference in 622 

treatment means is greater than the difference in comparison group means, p < 0.05 for Interest 623 

and Persistence categories, and p < 0.01 for Real World, Sense Making, Answers, and Overall 624 

categories. 625 

 626 



<Figure 5 here>627 

 628 

Discussion  629 

 630 

This article presents an instrument designed to measure beliefs and attitudes towards 631 

mathematics held by undergraduate students relative to mathematicians. The MAPS categories 632 

emerged from statistically rigorous analyses, were shown to be well-grounded in the research 633 

literature, and representative of the large set of epistemological beliefs, perceptions, and attitudes 634 

known to affect students’ academic outcomes in mathematics. Additionally, we have 635 

intentionally kept the survey brief enough to be used as a pre and post test instrument in 636 

authentic course settings.   637 

Results from our use of the MAPS survey are in line with results generated from its close 638 

cousins, the CLASS surveys. Generally, students move away from expert-like conceptions of 639 



mathematics over a semester or year-long mathematics course. Students in a second year, 640 

specialized course, report more expert-like orientations to mathematics than those in first year 641 

courses. Classes centred on interactive engagement, that occasion more authentic mathematical 642 

experiences, tend to push students away from expert-like conceptions less than traditional 643 

courses. Also, correlations were found between the MAPS subscales, including overall expertise 644 

index, and course grades, highlighting the importance of expert-like orientations for academic 645 

achievement.  646 

An interesting future application of MAPS would be in monitoring how students’ beliefs 647 

about mathematics change over the duration of an undergraduate degree. It is expected that, on 648 

average, students will shift toward more expert-like conceptions of their discipline.[69] 649 

However, this aggregate shift may not be caused by individual-level shifts. For example, Bates, 650 

et al. [38] and Madsen, McKagan, and Sayre [70] found that those students entering a physics 651 

program with more expert-like conceptions of physics were more likely to complete the program 652 

and that their conceptions of physics remained largely unchanged. This suggests that a physics 653 

program selects for physics-oriented students rather than developing an orientation to physics. 654 

We suspect the situation in mathematics is similar. Indeed, a common belief among 655 

mathematicians is that students who have productive dispositions towards mathematics which 656 

are more like professional mathematicians are more likely to be successful in a mathematics 657 

program. Many talented students leave STEM, often for reasons unrelated to their ability.[71] It 658 

is of great importance that departments foster and encourage growth, including more expert-like 659 

beliefs, instead of only catering to students already possessing that collection of beliefs. 660 

This view of “good” mathematics students as having an innate ability in mathematics is 661 

echoed in our expert responses to our Mindset questions. Neither of the statements, “being good 662 



at math requires natural (i.e. innate, inborn) intelligence in math,” (MAPS #22) and, “for each 663 

person, there are math concepts that they would never be able to understand, even if they tried” 664 

(MAPS #31) reached expert consensus. This seems to suggest that a fixed mindset is prominent 665 

among, at least some, mathematicians. This is puzzling since our other two mindset questions, 666 

“Math ability is something about a person that cannot be changed very much,” (MAPS #05; 667 

expert consesus: Disagree), and “Nearly everyone is capable of understanding math if they work 668 

at it,” (MAPS #06; Agree), did have consensus. This suggests an important topic for future 669 

research: is the belief that mathematical ability is innate and largely static common among 670 

mathematicians? Does this influence the way they teach?   671 

As a final note, researchers interested in using MAPS should not necessarily feel 672 

restricted by our usage of it. There are many other possible results that the MAPS survey could 673 

help establish. For example, the various CLASS implementations have explored correlations 674 

between expert-like orientations and grades and how these orientations change over time. Indeed, 675 

MAPS could usefully be employed in any undergraduate mathematics education setting where 676 

student beliefs and perceptions are suspected to play a role.  677 

 678 

 679 

 680 

 681 
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Appendix: The MAPS Instrument 867 

 868 

The MAPS instrument consists of the following 31 questions and 1 filter statement. The survey 869 

can be offered online or in written form. Students respond to each question using a 5-point Likert 870 

format: “Strongly Disagree”, “Disagree”, “Neutral”, “Agree”, and “Strongly Agree”. The student 871 

receives 1 point for a question if their answer is in the same direction—that is, in the disagree or 872 

agree direction—as the expert consensus, given at the end of each question below. If the student 873 

responds in the opposite direction of the consensus, or a neutral response is given, they receive 0 874 

for that question. The total expertise index is calculated by averaging the scores for all questions 875 

except 19, 22, and 31. Subscale scores are calculated analogously, with the question numbers 876 

comprising each category given in Table 2.  877 

Table 2: MAPS categories and corresponding question numbers. 

Category Question 

Growth Mindset 5, 6, 22, 31 

Real World 13, 15, 21, 25 

Confidence 1, 14, 17, 20 

Interest 12, 26, 32 

Persistence 8, 10, 24, 29 

Sense Making 3, 4, 11, 18, 23 

Answers 2, 7, 9, 16, 28, 30 

No category but scored for expertise 27 

Filter statement 19 

Expertise (expert consensus) all except 19, 22 and 31 

 878 



The following questions are the MAPS instrument. The direction of the expert consensus follows 879 

each question in parentheses.  880 

1. After I study a topic in math and feel that I understand it, I have difficulty solving 881 

problems on the same topic. (Disagree) 882 

2. There is usually only one correct approach to solving a math problem. (Disagree)                                      883 

3. I'm satisfied if I can do the exercises for a math topic, even if I don't understand how 884 

everything works. (Disagree)          885 

4. I do not expect formulas to help my understanding of mathematical ideas, they are just 886 

for doing calculations. (Disagree)         887 

5. Math ability is something about a person that cannot be changed very much. (Disagree)                             888 

6. Nearly everyone is capable of understanding math if they work at it. (Agree)      889 

7. Understanding math means being able to recall something you've read or been shown. 890 

(Disagree)     891 

8. If I am stuck on a math problem for more than ten minutes, I give up or get help from 892 

someone else. (Disagree)                                 893 

9. I expect the answers to math problems to be numbers. (Disagree)                                                               894 

10. If I don't remember a particular formula needed to solve a problem on a math exam, 895 

there's nothing much I can do to come up with it. (Disagree) 896 

11. In math, it is important for me to make sense out of formulas and procedures before I use 897 

them. (Agree) 898 

12. I enjoy solving math problems. (Agree)    899 

13. Learning math changes my ideas about how the world works. (Agree)       900 

14. I often have difficulty organizing my thoughts during a math test. (Disagree)           901 



15. Reasoning skills used to understand math can be helpful to me in my everyday life. 902 

(Agree) 903 

16. To learn math, the best approach for me is to memorize solutions to sample problems. 904 

(Disagree)                                             905 

17. No matter how much I prepare, I am still not confident when taking math tests. 906 

(Disagree)    907 

18. It is a waste of time to understand where math formulas come from. (Disagree) 908 

19. We use this statement to discard the survey of people who are not reading the questions. 909 

Please select Agree (not Strongly Agree) for this question. (Filter statement)                                              910 

20. I can usually figure out a way to solve math problems. (Agree) 911 

21. School mathematics has little to do with what I experience in the real world. (Disagree) 912 

22. Being good at math requires natural (i.e. innate, inborn) intelligence in math. (Disagree) 913 

23. When I am solving a math problem, if I can see a formula that applies then I don't worry 914 

about the underlying concepts. (Disagree) 915 

24. If I get stuck on a math problem, there is no chance that I will figure it out on my own. 916 

(Disagree)   917 

25. When learning something new in math, I relate it to what I already know rather than just 918 

memorizing it the way it is presented. (Agree)                                             919 

26. I avoid solving math problems when possible. (Disagree) 920 

27. I think it is unfair to expect me to solve a math problem that is not similar to any example 921 

given in class or the textbook, even if the topic has been covered in the course. (Disagree) 922 

28. All I need to solve a math problem is to have the necessary formulas. (Disagree)                                        923 

29. I get upset easily when I am stuck on a math problem. (Disagree)                                                            924 



30. Showing intermediate steps for a math problem is not important as long as I can find the 925 

correct answer. (Disagree) 926 

31. For each person, there are math concepts that they would never be able to understand, 927 

even if they tried. (Disagree) 928 

32. I only learn math when it is required. (Disagree) 929 

 930 


