Biology 306 Advanced Ecology

Instructors: Gary Bradfield - Lectures Mary O'Connor - Lectures Malin Hansen - Learning Activities Wayne Goodey - Labs

TAs: Biol 304 & 306

Bill	Steve	Liz	lain	Tom
Harrower	Henstra	Kleynhans	Caldwell	Porteus
Robbie	Sarah	Frances	Youhua	Peter
Lee	Fortune	Robertson	Chen	deKoning

Textbook: Cain Bowman & Hacker (2008) "Ecology". Vista site: Course outline, missed exam policy, etc.

Course structure + evaluation

• Lectures (70%)

Two Mid-terms (25%) + Final exam (45%)

• Labs (20%)

Three field labs

Participation (10%)

Learning activities (4%) Clickers (4%)

Surveys (2%)

Ecological examples

Biol 306 "Big questions"

A. Why do species differ in their population dynamics?

B. How do species coexist?

C. Are communities stable?

D. How much biomass is produced, and what is its fate?

Question A: Why do species differ in their population dynamics?

Stochasticity at the population level: environmental vs demographic

"Dynamics" result from multiple causes

An "evolution" of my approach to teaching...

"Ah-ha's"

Conceptual surveys...

- Density dependence
- Population regulation
- Stochasticity
- Interpreting graphs & data tables
- Translating theory to actual examples
- Designing experiments to test hypotheses

What have we learned from using a conceptual survey in BIOL 306?

Normalized learning gain

Normalized learning gain =

(Post-test score-pre-test score)/ (total possible score-pre-test score)

Normalized learning gain

Normalized learning gain

Tracking learning of fundamental concepts

Stochastic vs. deterministic processes

Lotka-Volterra competition model

Tracking the retention of fundamental concepts

Density dependent processes

Population regulation