

Carl Wieman Science Education Initiative at the University of British Columbia

2010-11 End of Year Event

<u>Talks</u>

Overview of CWSEI progress – Sarah Gilbert, CWSEI Acting Director

Faculty Experiences:

Georg Rieger (Physics) Susan Allen (Oceanography) Gary Bradfield (Ecology) Mark MacLean (Mathematics)

Poster session 11am-1:30pm room 261

Details on what's happening (& food)

1:30 – 2:50pm, room 182 – **Example Class followed by discussion** *lead by Harvey Richer*

Workshops:

3:00 – 4:30pm, room 185 – Designing in-class activities

3:00 – 4:30pm, room 260 – Effective Peer Instruction using clickers

CWSEI "Trinity" for each course

1st: Learning goals. (what should students be able to <u>do</u>?)

2nd: Good assessment (validated tests)

3rd: Improved teaching methods (research based, improve learning)

Materials, assessment tools, homework, notes ... saved, reused, improved.

Making teaching more effective, and more rewarding for faculty and students

Carl Wieman Science Education Initiative

Started 4 years ago \Rightarrow goal is widespread improvement in science education at UBC, focusing on department level.

CWSEI Programs at various scales and stages:

Large scale & in later stage – Earth & Ocean Sciences Large & Medium scale at earlier stages: Physics & Astronomy Mathematics Computer Science Life Sciences

Smaller scale programs – Chemistry, Statistics

\$2 M gift from David Cheriton for Math and Computer Sci.

Overview of Progress (More details in talks & posters)

Earth & Ocean Sciences

STLFs: Francis Jones, Brett Gilley, Erin Lane, & Josh Caulkins; CWSEI Dept. Director: Sara Harris

- About 60% of faculty have made significant changes to teaching.
- 20 courses undergoing or completed transformation plus another 10 improved with SEI help
- Typical new things:
 - clearly articulated learning goals for students & faculty
 - pre-reading assignments & quizzes
 - $_{\circ}$ clicker questions and peer discussion
 - worksheets & in-class group activities
 - 2-stage exams (individual + group)
 - team projects
 - pre-post testing to measure learning, ...

much more active learning and feedback

cwsei.ubc.ca/departments/earth-ocean_courses.htm

COURSE	LEARNING GOALS	NEW ASSESSMENTS	IMPROVED METHODS
EOSC 211: Computer Methods in Earth, Ocean & Atmosph. Sciences (Jan '09 start) <u>Faculty:</u> R. Pawlowicz, C. Johnson <u>STLF:</u> Josh Caulkins <u>STLF:</u> Josh Caulkins <u>STLF:</u> Josh Caulkins <u>Student perspectives:</u> <u>focus group set up &</u> <u>findings from EOSC</u> <u>211</u> <u>S</u> Poster: <u>Transformations and</u> <u>results</u>	Course-level goals: complete Lecture-level goals: complete Learning goals for Labs/Assignments: draft	Pre-post assessment: Administered in Teach 1 and edited for Teach 2, can be used "as is" for all future terms Midterm and end-of-term surveys New types of exam questions based on computer science concepts	In-class worksheets for every lecture Pair-programming used in all labs and assignments. Name-sticks used to call on students during lectures and in-class discussions Post-lecture Interviews Lab interviews
EOSC 212: Topics in the Earth & Planetary Sciences (Jan '08 start) Faculty: M. Jellinek, M. Bostock STLF: Francis Jones Final transformation term was Fall'09, but further refinements of generic science thinking activities and	Course-level goals: complete Focus is on science thinking skills rather than content	End-of-term survey for project evaluation Quizzes on readings for both individual and teams, using Team Based Learning strategies Two projects (presentation and poster), including feedback at multiple stages of delivery Pre-post test related to model-based	Vista Course Management System used extensively for content delivery, quizzing, surveying, logistics. Team Based Learning elements: permanent teams, individual/team quiz protocols & in-class team activities Content from Scientific American and other articles and lectures Three modules chosen to highlight Departmental research strengths

cwsei.ubc.ca/departments/earth-ocean_courses.htm

EOSC 372: Introductory Oceanography: Circulation and Plankton (Jan '09 start) <u>Faculty:</u> S. Allen, K. Orians, M. Maldonado, E. Lane <u>STLF:</u> Erin Lane	Course-level goals: complete Lecture-level goals: complete Assignment learning goals: complete	Mid-term survey End-of-term survey Daily online quizzes Pre-requisite knowledge diagnostic quiz Draft post test Student workloads questions	Widespread use of thought- provoking clicker questions Daily assignments with online quizzes In class demonstrations and analogies developed
EOSC 373: Introductory Oceanography: Climate and Ecosystems (Sept '09 start) <u>Faculty:</u> M. Maldonado, S. Allen, R. Francois, E. Lane <u>STLF:</u> Erin Lane	Course-level goals: complete Lecture-level goals: complete	Mid-term survey Draft diagnostic test Daily online quizzes	Widespread use of thought- provoking clicker questions Daily assignments with online quizzes
EOSC 472: Introduction to Marine Chemistry and Geochemistry (Sep '09 start) <u>Faculty:</u> K. Orians <u>STLF:</u> Joshua Caulkins	Course-level goals: complete, editing for new content Lecture-level goals: draft, editing for new content	Midterm and end-of-term surveys Reading quizzes introduced Reworked homework sets Term papers enhanced to be a "critical review paper" which includes greater depth of comprehension	Weekly worksheet activities Anonymous peer-reviewed writing assignment with instructor feedback Post-lecture student interviews Investigating new textbook options, perhaps introducing a packet of articles name sticks used during lectures

Susan Allen talk about her experience transforming Oceanography courses

Physics & Astronomy

STLFs: Louis Deslauriers, James Day, Jim Carolan, Cynthia Heiner, Peter Newbury, & Ido Roll; CWSEI Dept. Director: Mona Berciu

- Astronomy courses Exploring the Universe I & II Harvey Richer example class at 1:30pm in this room
- Intro Physics courses: *Phys 100, 101, 102, 107, 109, 153* Georg Rieger talk about his experience transforming courses
- Higher level Physics courses: *Phys 200, 250, 304, 408, 450*
- Some courses have no lectures anymore Workshop on designing activities this afternoon at 3:00pm; David Jones will be sharing his experience transforming Phys 408

Mini-transformation in Physics 153 (Electromagnetic Waves topic)

Status: Accepted for publication in Science

Results inspired department to do full transformation of course *Mini-transformations in Phys 102 in Spring 2011*

Life Sciences

STLFs: Jared Taylor & Malin Hansen; CWSEI Dept. Director: George Spiegelman

BIOL 112 – Cell Biology

Invention activities, investigation activities, In-class writing assignments, clicker questions & peer discussion, ...

Coming up with plausible mechanisms for biological process student never encountered before:

Published in CBE-Life Sciences Education

Selected for inclusion in the 2010 Highlights issue

- Ecology courses BIOL 304 & 306 Fundamentals of Ecology and Advanced Ecology redesigned around the questions:
 - Why do species differ in their population dynamics?
 - How do species coexist?
 - Are communities stable?
 - Are humans reducing the ecosystem services on which we depend?

Gary Bradfield talk about his experience transforming Biol 306 – Advanced Ecology

Mathematics

STLFs: Warren Code, Joseph Lo, & Sandi Merchant; CWSEI Dept. Director: Costanza Piccolo

- Calculus courses MATH 110, 104/184, 180/184 workshops Major effort in MATH 104/184 (Differential Calculus with Applications to Commerce and Social Sciences) Mark MacLean will talk about what they did and how it went
- Computing/computer lab components Math 152, 256 (Mech 221), 257/316, 253 (Mech 222), & Math 307
- Mathematical Proof Math 220

Developed pre-post test for basic proof skills, conducting student interviews, discovering interesting student thinking about proofs

- Mathematical Models in Science MATH 360 (new course)
- Mathematics Attitudes Perceptions Survey under development

6 posters on above projects

MAPS: Mathematics Attitudes Perceptions Survey

- Dependence on procedures e.g. To learn math, I only need to memorize solutions to sample problems.
- Need to understand formulas or procedures e.g. In math, it is important for me to make sense out of formulas and procedures before I can use them correctly.
- Relation to real world

 e.g. Learning math changes my ideas about
 how the world works.
- Exploration in problems solving e.g. There are times I solve a math problem more than one way to help my understanding.
- Confidence

e.g. If I get stuck on a math problem, there is no chance that I will figure it out on my own.

Independence in learning
 e.g. I cannot learn math if the teacher does
 not explain things well in class.

Computer Science

STLFs: Ryan Golbeck & Allison Tew; CWSEI Dept. Director: Paul Carter

Software Practices Stream – CPSC 110, 210, 310, 410
 Helping with new CPSC 110 & 210

Longitudinal study

measure how student knowledge develops and how well that knowledge is retained across a series of courses in their curriculum (measuring the progress towards expertise)

- Interviewed faculty
- Analyzed course learning goals
- Working to develop and pilot the instruments
- A number of smaller & ongoing projects See posters by Kim Voll & Andre Malan and Elizabeth Patitsas & Steve Wolfman for a sample

Chemistry

Large first year labs – CHEM 121 & 123 Jennifer Duis, Sophia Nussbaum, Laurel Schafer, Jackie Stewart

- Develop laboratory learning goals
- Developed & validated 9 instruments to measure laboratory learning Uncovered areas of difficulty and misconceptions Data to direct targeted enhancements
- Increased knowledge of incoming student background
- Data supporting student appreciation of learning goals
- Improved student attitude/perception agreement with experts
- Insight into employer, faculty and student impressions of UBC laboratory skills
- Undergraduate Research Assistants significant involvement
 Student researchers learned to:
 - 1) Design and/or revise/validate educational research tools (eg. surveys)
 - 2) Collect and manage large data sets (n = 1000)
 - 3) Code and statistically evaluate data using various statistical methods
 - 4) Interpret and present their results in written and oral formats
 ** see posters**

Carl Wieman Science Education Initiative at the University of British Columbia

Lots of great progress - talks & posters give more details

<u>Talks</u>

Faculty Experiences:

Georg Rieger (Physics) Susan Allen (Oceanography) Gary Bradfield (Ecology) Mark MacLean (Mathematics)

Poster session 11am-1:30pm room 261

Details on what's happening (& food)

1:30 – 2:50pm, room 182 – **Example Class followed by discussion** *lead by Harvey Richer*

Workshops:

3:00 – 4:30pm, room 185 – Designing in-class activities

3:00 – 4:30pm, room 260 – Effective Peer Instruction using clickers