Reflection, evaluation, and participation in undergraduate physics labs

Phys 107/109 &
Science 1
Physics Lab
140 students
Weekly 3-hour lab
sessions

The basic plan...

Natasha Holmes Physics & Astronomy

- Evaluating
- Data analysis
- Driving experiments

The skills

The Measurements

- Lab activities
- Observations
- Interviews

• Ideas so far...

The Teaching

Identifying the skills

Reflecting

- Can students check their results and compare to things they know as they work?
- When do students trust their data?

Evaluating

- Will they change models based on their data?
- Will they correct their methods if things don't make sense?

Doing experiments

- Can we motivate and empower students to do a good job taking data?
- Can we improve shared responsibility between partners while taking data?

Reflecting and evaluating data: Index of Refraction Lab

- Measure n using 3 methods:
 - Snell's Law
 - Total Internal Reflection
 - Brewster's angle
- Common systematic errors in measurements
 - Did they make the errors?
 - If so, did they fix the errors?
 - What motivated them to fix the errors?

What were they missing?

Trust in their ability

- to measure precisely and/or accurately
- In some cases, skepticism that they could have measured inaccurately

Trust in the experiment

• to measure accurately and precisely

Physics definitions

• Is critical angle point at which refracted beam starts to disappear or completely disappeared?

Time

- to reflect on their results
- correct mistakes
- evaluate what they mean physically

Reflecting and evaluating a model: LR Lab

 Measure time constant, τ, as a function of resistance in the resistor

- Accepted model: $\tau = L/R$
- Plot of $1/\tau$ vs. R does not give straight line that goes through the origin

Decisions they made...

Intercept fixed at origin

- Because model should have intercept through origin
 - Trust model rather than data
- Goal was to find L

Intercept unfixed

- To minimize χ²
- Because data obviously had intercept
 - Didn't impact finding L
- Goals was to check relationship

How to teach it?

Support

- Pre-readings
- Additional resources

Time

- Shorter labs
- 2-week labs

Experience

Experiment loops where going back improves measurements

Motivation

- Trust in their abilities
- Trust in quality of measurements

Challenges

- *Cognitive Overload
- *Time

- *Engagement & Interest
- *TA Training

Other things...

Gender roles in the lab

• Who's in charge of the equipment?

Motivation and attitudes

- Achievement Goal Questionnaire (Elliott, 1999)
- E-CLASS (Zwickl, Finkelstein, & Lewandowski, 2012)

Invention Activities

• Problem solving behaviours (e.g. Do they check?)

Cross-discipline measurements

• Compare with measurements of 'checking work' during problem solving in Biol234 (Fundamental of Genetics)