

Active classes in eosc355 The Planets a 3rd yr science elective course

Catherine Johnson, Francis Jones April, 2010

- Who's takes the course?
- Focus on in-class worksheet activities:
 - Context & learning goals
 - In-class pattern of work
 - Examples
 - Assessments

at the University of British Columbia

Lessons learned

Worksheets in context

3rd / 4th yr Sci. elective

prerequisites:

1st yr sci. only

Learning Goals

In-class Worksheets Practice with ...

- observing / measuring
- modelling / applying
- questioning / communicating
- Inferring / deducing

Teams (TBL-like)

- Distributed reasoning
- Peer support
- Tutor-like guidance from instructor

Worksheets help meet science-skills & content goals ...

Skills used in ...

Assignments (3)

- Solo
- Synthesis oriented

Projects (poster)

- 3-step deliverables, with feedback
- peer assessment

Midterms

'Generic' science skills

main goals

diverse sources &

Content

necessary

backgnd

assessments

- Readings + quizzes
- Lecture + clickers
- Participation
- Diagnostic tests

Topics

- Orbital mechanics
- Surface features
- Interiors
- Atmospheres

Learning goals.

- 1. Emulate the thinking of specialists when addressing questions or hypotheses Refer to measurements & observations, existing knowledge, and accepted or proposed models.
- 2. Recognize relevant **assumptions & limitations** when dealing with **models and data** Recommend observations, further theory or model refinement that might improve the model.
- 3. Estimate basic whole-body parameters of any planet, moon, etc.

 Use relationships between parameters and data describing orbital and tidal motions.
- 4. Use observable surface features to **discuss models** of surface age & geological history.
- 5. Develop, articulate & discuss hypotheses about how internal structure, dynamics and evolution relate to surface features, atmosphere, bulk properties, and magnetic fields.
- 6. Pose a clear question, hypothesis or proposal regarding any aspect of planetary science, then research, communicate and debate current state-of-the-art in a scholarly manner.

Worksheets flow

Some lessons learned

- Tutor Socratically equal time for all teams
- Watch timing carefully
- **Start:** clarify goals & reasons
- **Finish:** always resolve work refer to accomplishments (goals)
- minimize written instructions
- minimize output "product" (graphical deliverables are good)
- maximize reasons to discuss (e.g. avoid "right answers")
- Work should be difficult to do solo
- Vary the teams' spokespersons
- Cold-call by team via spokesperson

(Many strategies based on TBL)

Example: near end of module2, week6.

- Identify the major regions on the basis of crater densities and grayscale.
 On your image draw outlines of your regions, and label them, A, B, C, etc.
- 2. What are relative surface ages of your different regions (oldest to youngest?
- 3. Identify major linear or quasi-linear features and mark these on your image.
- 4. Is feature X younger than feature Y? (X and Y labels are on the projector.)

1. Identify major regions on the basis of crater densities and grayscale

Followup using clickers.

How many did you find?

A. ´

B. 2

C. 3

D. 4

E. >=5

1. Identify major regions on the basis of crater densities and grayscale

Discussion after clickers.

Teams highlight boundaries selected using laser pointer.

Evaluating effectiveness

- Testing results
 - Quizzes, midterm 1, midterm 2
- Assignment & project abilities
- Opinion surveying questions about —
- colour coded Q #'s
 teams
 learning goals
 quizzes / midterms
 projects
 "warnings"
 Instructor related

- Challenges:
 - It takes several iterations to perfect an activity
 - Timing; end-of-activity resolution is crucial
 - Tutoring 12 teams in 12 minutes takes practice!
 A teaching assistant helps for >70 students.
 - Consider a 'cold-calling' procedure to enable team contributions to class discussions.

Example: assignment #2

 Goal: Test two hypotheses for Venus' geological history using observations of cratering, volcanism and tectonism from radar images. Decide which of the hypotheses your observations best support.

Instructions include:

Data & resources ... procedures ... deliverables ... background

Tasks:

- Predictions of two hypotheses
- Test both your predictions using images provided (observations & calculations)
- Estimate ages of features (observations & calculations)
- Synthesis: discuss which hypothesis is most well-supported.

Feedback:

- What was the most difficult part of this assignment and why? (1-5 sentences).
- How long did you spend on the assignment (round to nearest hour)?

Pin example here.

Example test questions (paraphrased)

Imagine we have discovered Planet Z between Mars and the asteroid belt. Data or formulae for investigating planet Z are in the attached data sheet.

- 1. Which of these compositions <u>can</u> provide insight into the bulk composition of planet Z? Circle all that apply:
 - 1. A. Moon B. Earth C. Mercury D. Carbonaceous chondrite
 - 2. Solar photosphere F. Jupiter G. Galilean satellite
- 2. Give ONE brief reason for EACH composition you selected above.
- 3. Etc (more than 50% of midterm #2)

Example test questions (paraphrased)

Use this radar image of Venus for the next questions.

Radar illumination is from the left.

- 1. Identify features A-G as tectonic, impact, fluvial, weathering or volcanic. Try to be as specific as possible
- Now take any lava flows you have identified plus lava flow C and list them in order of decreasing age

- Now look at any major crater(s) you have identified. What can you infer 3. about the timing of the crater(s) relative to the lava flows?
- 4. Etc (roughly 20% of midterm #1)

Midterm results:

Generally a good balance of difficulty.

Is this distribution suitable for a 3rd or 4th year off-disciple science elective ??

You decide

Opinion surveying

Feedback from 59 / 64 students

(pin survey results here)

