Development And Analysis Of A Basic Proof Skills Test

Sandra Merchant & Andrew Rechnitzer
Carl Wieman Science Education Initiative
University Of British Columbia

Motivation

- MATH 220: "Mathematical Proof"
- Typical "transition-to-proof" course:
 - "Sets and functions; induction; cardinality; properties of the real numbers; sequences, series, and limits. Logic, structure, style and clarity of proofs emphasized throughout"
- Gateway to upper-level math
- Many factors led to CWSEI involvement
 - High failure rates
 - Instructor dissatisfaction with learning outcomes and teaching experiences
 - Reputation with students

The CWSEI Mandate:

Achieving the most effective, evidence-based science education

The Process:

- 1. Determine what students should learn
- 2. Measure what students are actually learning
- 3. Implement researchbased instructional approaches to improve learning (and measure the result)
- Disseminate and adopt what works

CWSEI Goals:

- Improve:
 - learning outcomes in MATH 220
 - failure rates and student experience
- Track proof skills through the math program

Instructors Interviews:

- Students lack "basic" (i.e. prerequisite) logic and computational skills
 - at the start of Math 220
 - even after successfully completing Math 220

Need to assess these "basic" logic and math skills

The Basic Proof Skills Test

- Goal: Create a short (20 min), multiple-choice test to administer in Math 220 to assess skills instructors deem crucial for success in the course.
 - Focus on key observed difficulties
 - Minimize notation and technical language
 - Should correlate with performance in the course
- V1 Sep 2010 (open-ended and multiple choice)
- V2 Apr 2011 (open-ended and multiple choice)
- V3 May 2011 (fully multiple choice)

Typical Question Development

Consideration of Item Analysis Statisticand Full Test Statistics:

- Difficulty index
- Discrimination index
- Item-to-total correlation
- Item characteristic curves
- Cronbach's alpha (alpha =0.66)
- Ferguson's Delta (delta = 0.94)
- Test-retest reliability (r = 0.94)

Correlation with Grades

Pre-test and Post-test both correlate strongly with overall performance in the course

(data from 2011 Winter, Term 2)

Test Items: Relevant Algebra, Functions and Graphing

4 Questions

- Identified common errors on final exams
- Focus on absolute values and inequalities

Algebra:

Find the set of all values of x for which

$$|2 - x^2| < 2$$

is true.

(a)
$$(0, \sqrt{2})$$
 (c) $(-2, 0)$

(c)
$$(-2, 0)$$

(e)
$$\left(-\sqrt{2}, 0\right) \cup \left(0, \sqrt{2}\right)$$

(g)
$$(-2, 2)$$

(d)
$$\left(-\sqrt{2}, 0\right)$$

(d)
$$\left(-\sqrt{2}, 0\right)$$
 (f) $(-2, 0) \cup (0, 2)$

(h)
$$\left(-\sqrt{2}, \sqrt{2}\right)$$

Test Items: Relevant Algebra, Functions and Graphing

Graphing:

Test Items: Logic

- Logical Implication (3 questions)*
 - o Equivalence to contrapositive, converse, inverse

Do the following two statements mean the same thing?

"If I am healthy, then I will come to class"

"If I come to class, then I am healthy"

- (a) Yes
- (b) No
- Open sentences (3 questions)

for real numbers x and y, $\sqrt{x^2 + y^2} < x$

- (a) always true
- (b) sometimes true
- (c) never true

^{*} Hoyles & Kuchemann (2002), Durand-Guerrier (2003)

Test Items: Logic

Proof validation* (1 question)

Below is a statement and 3 proofs. Select the proof of the statement that is **correct** and **complete**.

"For any positive numbers a and b, $\frac{a+b}{2} \ge \sqrt{ab}$ "

(a)

Proof: Assuming that

$$\frac{a+b}{2} \ge \sqrt{ab}$$

Multiply both sides by 2 Squaring

$$\begin{array}{rcl} a+b & \geq & 2\sqrt{ab} \\ (a+b)^2 & \geq & 4ab \\ a^2+b^2+2ab & \geq & 4ab \\ a^2+b^2-2ab & \geq & 0 \\ (a-b)^2 & > & 0 \end{array}$$

Which is true for positive numbers. So the assumption was true.

(Adapted from the Field-Tested Learning Assessment Guide (FLAG), Ridgway et al (2001))

* Moore (1994), Coe & Ruthven (1994), Harel & Sowder (1998), Selden & Selden (2003), Weber (2010), Mejia-Ramos & Inglis (2011), Inglis & Alcock (2012)

Test Items: Quantifiers and Definitions

- Mathematical Quantifiers* (2 questions)
 - Order of existential and universal quantifiers

True or false: There exists a real number a such that we can find a real number b such that a-b=4.

- (a) True
- (b) False

True or false: There exists an integer x such that for every integer y, x + y = 3.

- (a) True
- (b) False

^{*} Dubinsky (1997), Dubinsky & Tiparaki (2000), Piatek-Jimenez (2010)

Test Items: Quantifiers and Definitions

- Mathematical Definitions (3 questions)
 - Including conjunction, disjunction and negation

For a pair of integers (a, b) we have following definition (for this test only, this is not a standard definition):

When a is even or b is odd then the pair (a, b) is called happy.

Select all pairs below that are happy.

- (a) (1,0) (c) (-2,3) (e) (3,0)

(g) (-1,1)

- (2,0) (d) (5,-1) (f) (3,-3) (h) (1,-4)

Tracking Learning Gains

 Administered as a pre- and post-test, to track learning gains and compare instructional approaches

Identifying Items Responsive to Instruction

Equivalence of implication and contrapositive

Definition with disjunction

Identifying "Stubborn" Difficulties

Quantifiers: There exists x such that for all y, x+y=3

Proof validation

Definition with conjunction and negation

Longitudinal Tracking and Cohort Comparison

Future Plans

- Improve the test further
 - Validity and reliability
 - Consultation with more domain experts (instructors and researchers)
 - Student validation
- Possibly extend its use to other courses or institutions

Create a similar instrument for higher-level proof skills

References

- 1. Hoyles & Kuchemann (2002). Students' understandings of logical implication. Educational Studies in Mathematics, 51, 193-223.
- 2. Durand-Guerrier (2003). Which notion of implication in the right one? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53, 5-34.
- 3. Dubinsky (1997). On learning quantification. Journal of Computers in Mathematics and Science Teaching, 16, 335-362.
- 4. Dubinsky & Yiparaki (2000). On student understanding of AE and EA quantification. CBMS Issues in Mathematics Education, 239-289.
- 5. Piatek-Jimenez (2010). Students' interpretations of mathematical statements involving quantification. Mathematics Education Research Journal, 22, 41-56.
- 6. Ridgway et al (2001). Assessing mathematical thinking via FLAG. In The Teaching and Learning of Mathematics at University Level, 423-430.
- 7. Coe & Ruthven (1994). Proof practices and constructs of advanced mathematics students. British Educational Research Journal, 20, 41-53.
- 8. Moore (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266.
- 9. Harel & Sowder (1998). Students' proof schemes: Results from exploratory studies. CBMS Issues in Mathematics Education, 7, 234-283.
- 10.Selden & Selden (2003). Validations of proofs written as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34, 4-36.
- 11. Weber (2010). Mathematics majors' perceptions of conviction, validity, and proof. *Mathematical Thinking and Learning*, 12, 306-336.
- 12.Mejia-Ramos & Inglis (2011). Semantic contamination and mathematical proof: Can a non-proof prove? Journal of Mathematical Behavior, 30, 19-29.
- 13.Inglis & Alcock (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43, 358-390.

Question	Pre-test			Post-test		
	Difficulty	Discrimination	Item-to-	Difficulty	Discrimination	Item-to-
	Index	Index	total	Index	Index	total
			Correlation			Correlation
1	0.62	0.34	0.06	0.72	0.48	0.26
2	0.61	0.55	0.25	0.68	0.60	0.30
3	0.64	0.62	0.24	0.71	0.48	0.24
4	0.31	0.48	0.17	0.48	0.69	0.32
5	0.88	0.14	0.03	0.91	0.23	0.20
6	0.62	0.52	0.16	0.72	0.31	0.12
7	0.74	0.44	0.23	0.88	0.33	0.33
8	0.76	0.31	0.14	0.90	0.38	0.36
9	0.57	0.49	0.16	0.90	0.25	0.29
10	0.88	0.26	0.19	0.95	0.10	0.13
11	0.71	0.52	0.30	0.90	0.30	0.33
12	0.64	0.44	0.11	0.70	0.58	0.38
13	0.37	0.53	0.14	0.58	0.51	0.23
14	0.31	0.23	0.07	0.48	0.40	0.12
15	0.42	0.46	0.10	0.68	0.63	0.28
16	0.37	0.27	0.01	0.42	0.70	0.31

Cronbach's Alpha

Pre-test: 0.48 Post-test: 0.66

Ferguson's Delta

Pre-test: 0.93 Post-test: 0.94

Average (corrected) Pointbiserial correlation:

> Pre-test: 0.15 Post-test: 0.26

Test-retest Reliability (computed correlation of item difficulty indices for two separate term pre-tests)

Correlation coefficient: 0.944