Misconceptions and Concept Inventory Questions for Binary Search Trees and Hash Tables

Kuba Karpierz, Steven Wolfman, and others in the CS-SEI

Concept Inventory Status

Identifying key learning goals	Instructor interviews	
Studying student artifacts	Analysis of 200+ Qs (15+ exams) + project submissions	Still working on a few key
Designing open-ended questions	~30 draft Qs	topics
Think-aloud interviews	~25 hrs of interviews	
Designing MC questions	~25 draft Qs	
Validation interviews	~5 hrs of interviews	<i>Much</i> more needed (tricky
Expert validation	Feedback @ broad presentation + some 1-1 feedback	with iterative development!)
Data collection and analysis	9 offerings (~600 students); much analysis left to go!	Much analysis
Feedback to instructors & curriculum	Dep't talk & 1-1 with instructors in area	& feedback left to do!

Correct Answer

Rehashing vs. Block-Copying

CPSC 221	CPSC 320
38%	23%

Reallocating vs. Extending

CPSC 221	CPSC 320
22%	23%

(Percentages of students who answered each question.)

For each of these: is it a heap (only), BST (only), both, or neither?

BST/Heap conflation in prior work (Danielsiek et al., SIGCSE 2012) Unable to replicate (us or original authors)

And yet, similar misconception appeared in think-alouds, exam analysis, etc.

Draw a BST whose keys printed in post-order traversal are: 20 15 30 25 75 90 80 65 50. A 50 75 65 D E F G 70 20 25 90 80 What shape is a binary search tree that contains the keys 1, 2, 3, 4, 5, 6, and 7?

Expert feedback \rightarrow "A binary search tree contains the keys 1, 2, 3, 4, 5, 6, and 7. What shape **must** the tree be?" **CPSC 121** (and CPSC 110 co-req): BSTs illustrate an interesting recursive structure. Little discussion of efficiency or visualization of algorithms.

CPSC 221: BSTs discussed extensively, implemented, and used as foundation for a variety of other data structures. Binary trees (**not** BSTs) used as foundation of heap data structure during same term.

CPSC 320: Continued use of trees as analysis tool and data structure. (Little continued use and less continued study of heap data structure.)

	CPSC 121	CPSC 221	CPSC 320
а	3%	0%	0%
b	66%	27%	52%
С	20%	0%	2%
d	1%	16%	2%
е	10%	57%	44%

Other Current CI Questions

- Data collection/analysis stage
 - Determining what a proof means
 - Classifying functions as exponential
 - Describing code with recurrence relations
- Earlier stages

. . .

- Induction
- Dynamic Programming