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N —
Abstract

Statistics is often used as if it were a set of lab techniques, like pipetting.
In the conventional formulation, there are different tests for different
situations: the p-test, the one-sample t-test, the two-sample t-test,
ANOVA, and so on. The “testing” paradigm dominates statistics textbooks.
An alternative way to use statistics is to support building mathematical
models based both on data and the hypotheses of interest to the
investigator. The models can capture and describe relationships among
multiple variables allowing greater flexibility in framing hypotheses and
assessing the extent to which data are consistent with those hypotheses.
I'll describe some basic statistical modeling techniques and show how
teaching based on a core logic of randomization and repetition makes
statistical modeling and inference accessible to introductory students.
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N —
What is Statistics?

Not necessarily a simpler question than "What is Science?” although
statistics has a much, much shorter history, perhaps 300 years until one is
in pre-history.

e “The Science of Data” — a purely rhetorical attempt to label statistics
as relevant and scientific.
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N —
What is Statistics?

Not necessarily a simpler question than "What is Science?” although
statistics has a much, much shorter history, perhaps 300 years until one is
in pre-history.
e “The Science of Data” — a purely rhetorical attempt to label statistics
as relevant and scientific.

e “The Gatekeeper of Science” — In the role of a policemen. This is
how most scientists encounter statistics, when they need to generate
a p-value to satisfy an editor.

e “The explanation of variation in the context of what remains
unexplained.”
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Statistics provides perspective

The explanation of variation ...

Much of science can be seen as explaining why different things are
different, e.g:

e Pressure in a cylinder different at top and bottom of stroke.
e Hot objects glow differently from cold objects.
e Diabetics react to food differently.

Scientists identify (or construct) entities that can be used to frame
mechanistic explanations, e.g., glucose, insulin, energy, heat, pressure,
temperature, photons, charge, mass, ...

. in the context of what remains unexplained.

Measuring what you don’t know is important. An important contribution
of statistics is

e approaches for measuring what your data don't tell you,

e and using this to evaluate the strength of evidence.
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A Statistical Reasoning Diagnostic Test

A researcher is examining the properties of a material. She measures the
result found by systematically varying the applied voltage. The samples
were produced by three different students.

Measured Unmeasured?
Result | Voltage || Student | Temperature.
3 A 49
4 A 52
5 C 38
6 B 31
7 B 26
8 C 18

Can useful information potentially be extracted once the results are
entered? Will there be sufficient data? How are your answered tempered
by seeing the “Unmeasured” data?
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e The covariates (Student & Temperature) haven't been held constant.
This has consequences ...

e There is collinearity of Voltage and the covariates, potentially
producing confounding.

e Including the covariates leaves just one degree of freedom for the
residuals, dramatically reducing power.

o If interaction terms are allowed, there are no degrees of freedom in the
residual. So there is no way to estimate the reliability of the results.

e Without an estimate of the size of residuals we can’'t know what the
precision of the estimates will be.
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N —
Outline

@ Description of statistics taught as a series of “lab techniques.”

® Claim that it's now possible to teach statistics in a way that reveals
the underlying logic of statistical thought, transforming it in students
minds from a gatekeeper to a tool of investigation.
What's changed?

e Readily available computational power and languages that are
expressive and relatively easy to use. (I'll show examples.)

e Techniques for teaching linear algebra that are accessible and intuitive.
(Not in the talk.)

©® A very brief introduction to statistical logic.

O An example of the new techniques applied to a problem that will
seem simple to you, but is beyond the scope of what the vast majority
of science students learn about statistics.

Important, but not in this talk: Statistical techniques in terms of data
display and exploration. It's not just scatterplots and histograms.

Daniel KaplanMacalester College () Statistical Modeling As Part of Science August 4, 2010 at CWSEI 8 /59



Fisher's Statistical Methods, 1925
The prime object of this book is to put into

the hands of research workers, and especially
of biologists, the means of applying
statistical tests accurately to numerical data
= accumulated in their own laboratories or
Statistical Methods for . . .

Boearch Workers available in the literature. Such tests are the
result of solutions of problems of
distribution, most of which are but recent
additions to our knowledge and have so far
only appeared in specialised mathematical
papers. The mathematical complexity of
these problems has made it seem undesirable
to do more than (i.) to indicate the kind of
problem in question, (ii.) to give numerical
illustrations by which the whole process may

OLIVER AND BOYD

be checked, (iii.) to provide numerical tables

LONDON: 33 PATERNOSTER ROW, E.C
1925

by means of which the tests may be made
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Long-lasting Influence

e From the review in Nature 116, (1925)

STATISTICAL

815: "The book is intended for METHODS FOR
. . .. RESEARCH -
biological research workers, and it is WORKERS

apparently assumed that they already S el
know sufficient of the theory to accept,
without proof, the methods given, or
that they will adopt these methods on
Mr. Fisher's authority.”

123495

e The 14th edition was prepared from
notes left by Fisher when he died in
1962.
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Example from a Current Textbook

Stats

[ata and Models

A nice, contemporary-style reform statistics
book. These pictures are from the first
edition. There are several books by these
authors. This one is #21,640 overall at
Amazon, #64 in Probability and Statistics.

De Veaux™ Velleman  Bock

=] = = E =
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A One-Sample t-Interval for the Mean < STE

TEP

Let's build a 90% confidence interval for the mean speed of all vehicles traveling on Triphammer
Road. The interval that we’ll make is called the one-sample -interval.

m'! !: E Parameter Identify the parameter you wish

to estimate.

Choose and state a confidence level.

Of course, we start by looking at the data.

We wish to find a 90% confidence interval for

the mean speed, . of vehicles driving on
Triphammer Road.

Here's a histogram of the 23 observed speeds.
The histogram centers around 30 mph, and

the data lie between 20 and 40 mph. We'd ex-
pect a confidence interval to place the popula-
tion mean within a few mph of 30.

Daniel KaplanMacalester College ()
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Plan Check the conditions.

State the sampling distribution model for the
statistic.

Choose your method.

Chapter 23 Inferences About Means 459

+ Randomization condition: Mot really met.
We have a convetiience sample, but
we have reason to believe that It is rep
Tative.

sen

+ Nearly Normal condition: The histogram of
the epeeds is unimodal and symmetric.

Under these conditions the sampling distribu-
tion of the mean can be medeled by a Student’s
t-model with

(n — 1) = 22 degrees of freedom.

We will use a one-sample t-interval for the
mean.

Statistical Modeling As Part of Science




Mechanics Construct the confidence
interval.

Be sure to include the units along with the
statistics.

The critical value we need to make a 90%
interval comes from a Student’s t table, a
computer program, or a calculator. We have
23 = 1 = 22 degrees of freedom. The selected
confidence level says that we want 90% of the
probability to be caught in the middle, so we
exclude 5% in each tail, for a total of 10%. The
degrees of freedom and 5% tail probability are
all we need to know to find the critical value.

BEETETY The result looks plausible and in line with

Daniel KaplanMacalester College ()

what we thought.

We know:
n=23cars
¥y = 3.0 mph
s = 4.25 mph

The 90% eritical value Is t.5, = 1.717. (See the
table on the next page.)

From these, we find that the margin of error is

ME = t3; X SE(y)

=1.717(0.888)

= 1521 mph.
So the 90% confidence interval for the mean
speed Is

310 =15 mph, or (295 mph, 32.5 mph).
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Interpretation Tell what the confidence
interval means.

When we construct confidence intervals in
this way, we expect 90% of them to cover the
true mean and 10% to miss the true value.
This particular interval is one constructed in
this way, so, in this sense, it has a 90% chance
of covering the true mean.

alester College ()

We are 20% confident that the true mean
speed of all vehicles on Triphammer Road is be-
tween 29.5 and 32.5 miles per hour.

Caveat: This was not a random sample of vehicles.
It was a convenience sample taken at one time on
one day. And the participants were not blinded.
Drivers could see the police devics, and some may
have slowed down. We'd be reluctant to extend our
inference to other situaticns.

Statistical Modeling As Part of Science
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A One-Sample t-Test for the Mean

Let's apply the one-sample t-test to the Tri
know whether the mean speed exceeds

use that as the null hypothesis value.

phammer Road car speeds. The residents would like to
the posted speed limit. The speed limit is 30 mph, so we'll

Daniel KaplanMacalester College ()
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*A Sign Test

m‘!l! B Hypotheses State what we want to know.

Plan State the null model.

a) Check the conditions.

Daniel KaplanMacalester College ()

We want to know whether the median speed of
cars on Triphammer Road is 30 mph. We turn
‘this into a test of proportions:

Hp: Half the cars drive faster than 30 mph and
half drive slower; po = 0.50.

Ha: The true proportion of speeders is more
than 0.50.

¥ Random sampling condition: The data are
a convenience sample, not drawn with ran-
domization, but they are likely to be repre-
sentative.

¥ 10% condition: We observed some of what
could be a very large number of cars.

¥ Success/failure condition: Both rp, =
22(05) = N and ngp = 22(0.5) = 1l are
greater than 10, showing that we expect more
than 10 successes and more than 10 failures.




482  Part VI Learning About the Worid

A Two-Sample t-Interval  STEP-BY-STEP

Judging from the boxplot, the generic batteries seem to have lasted about 20 minutes longer than
the brand-name batteries. Before we change our buying habits, what should we expect to happen
with the next batteries we buy? How much longer might the generics last? Let's make a confi-
dence interval for the differences of the means.

mim Parameter Identify the parameter you wish to We wigh to find an interval that is likely with

WM WIS ~ estimate. In this case the parameter is the dif- 95'% confidence to contain the true difference
ference in the means of the populations to M — Mp between the mean lifetime of the
which the two groups belong. generic brand AA batteries and the mean life-

: time of the brand-name batteries.
Choose and state a confidence level. r Bt k

BTN From the boxplots, it appears our confidence
interval should be centered near a difference | °
of 20 minutes. We don’t have a lot of intuition
about how far the interval should extend on

210 |-
either side of 20. |

Duration (min)
&

2

&
R -5 AE

Brand Mama  Ransdin

u}
o)

I

i
it
)
»
?)
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A Paired t-Test

Think.

Daniel KaplanMacalester College ()

The steps of testing a hypothesis for paired differences are very much like the steps for a one-sam-
ple t-test for a mean. Only now we first take the difference of each pair and work with them as our

data values.

Hypothesis The parameter is the mean dif-
ference in the mileage driven.

Although we hope for a reduction in miles
driven, we have no reason to suppose that the
difference must be in that direction, so we'd
better test a two-sided alternative.

The individual differences are all in the hun-
dreds to low thousands of miles. We should
expect the mean difference to be comparable
in magnitude.

Plan Check the conditions.

State why you think the data are paired. Sim-
ply having the same number of individuals in
each group, displaying them in side-by-side
columns, doesn’t make them paired.

Think about what we hope to learn and
where the randomization comes from. Here,
the randomization comes from the random
events that happen to each driver during the
study.

H;:

Ha:

The mileage driven by each health depart-
ment worker during a four-day work week is
the same as hie or her mileage under the
original five-day work week; the mean differ-
ence is zero: py = O.

The mean difference is different from zere:
Py # O

Paired data assumption: The data are
paired becauee they are measuremente on
the same individuals before and after a
change in work schedule.

Independence assumption: The behavior of
any individual is independent of the behavior
of the others, so the differences are mutu-
ally independent.

Randomization condition: The measursd
values are the sums of individual trips, each
of which experienced random events that
arose while driving. Repeating the experiment
in two new yeare would give randomly differ-
ent values.

ical Modeling As Part of Science



A Paired t-Interval

_STEP-BY-STEP_ .

o

Making confidence intervals for matched pairs follows exactly the steps for a one-sample

tinterval

Parameter Identify the parameter you wish
to estimate.

For a paired analysis, the parameter of
interest is the mean of the differences. The
population of interest is the population of
differences.

[EEIEEIE The histogram shows husbands are often

Daniel KaplanMacalester College ()

older than wives (because most of the differ-
ences are greater than 0). The mean difference
seen here of about 2 years is reasonable.

Plan Check the conditions.

State the sampling distribution model for the
statistic.

Choose your method.

We wish to find an interval that is likely with
95% confidence to contain ., the true mean
difference in ages of husbands and wives.

-12-4 4 0 4 8 12 16 20
Husband's Age - Wile's Age (yr)

v Faired data assumption: The data are
paired because they are on members of
married couples.

¥ Randomization condition: These couples
were randomly sampled.

¥ Nearly Normal condition: The histogram of
the husband-wife differences is unimadal and
symmetric.

Under these conditions the sampling distribu-
tion of the differences can be modeled by a
Student’s t-model with (n — 1) = 169 degress
of freedom.

We will find a paired t-interval.

[} = -

ical Modeling As Part of Science



A Chi-Square Test for Goodness-of-Fit

We have counts of 256 executives in 12 zodiac sign categories. The natural null hypothesis is that
birth dates of executives are divided equally among all the zodiac signs. The test statistic looks at
how closely the observed data match this idealized situation.

Th‘ Hypotheses State what we want to know. We want to know whether births of successful
o E!&g people are uniformly distributed scross the
signs of the zodiac.
Hg: Births are uniformly distributed over zediac
slgns,”
Ha: Births are not uniformly distributed over
zodiac signs.

Plan Check the conditions. v Counted data condition: We have counts of
the number of executives in categories,

v Randomization condition: We have a conve-
nience sample of executives, but ro reason
to suspect bias.

v Expected cell frequency condition: The null
hypothesis expects that 112 of the 256
births, or 21,333, should occur in each sign,

These expected values are all greater than 5,

50 the condition is satisfied.
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Regression Inference

If our data can jump through all these hoops, we're ready to do regression inference. Let's try one
on the body fat data.

Th‘ Variables Name the variables, report the We have body measurements on 250 adult
\% W’s, and specify the questions of interest. males from the BYU Human Performance Re-
search Center. We want. to understand the rela-

tlonship between %body fat and waist size.
Plan Check the conditions.

v’ Straight enough condition: There's no obvi-
ous bend in the original ecatterplot of the

data or in the plot of residuals againet pre-
dicted values.
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A Regression Slope t-Test

The slope of the regression gives the change in breakup date per year. Let's test the hypothesis that

the slope is zero.
.l.h' Ig Hypotheses
State what we want to know.

(Hypotheses on the intercept are not particu-
larly interesting for these data.)

Daniel KaplanMacalester College ()

We wonder whether the date of ice breakup has
become earlier.

Hg: There ig no change in the date of ice
breakup: B, = O

Hy: Yes, there is: B, # 0




Analysis of Variance «

Think

Daniel KaplanMacalester College ()

In Chapter 5 we looked at side-by-side boxplots of four different containers for holding hot bever-
ages. The experimenter wanted to know which type of container would keep his hot beverages hot
longest. To test it, he heated water to a temperature of 180 °F, placed it in the container, and then
measured the temperature of the water again 30 minutes later. He randomized the order of the tri-
als and tested each container 8 times. His response variable was the difference in temperature (in
°F) between the initial water temperature and the temperature after 30 minutes. Let’s test whether

these containers really perform differently.

Plot Plot the side-by-side boxplots of the
data.

Plan State what we want to know and the
null hypothesis we wish to test. For ANOVA,
the null hypothesis is that all the treatment
groups have the same mean. The alternative
is that at least one mean is different.

3 B

Temperalure Change (°F)

-

CUPPS  Missan  8IGG  Starbucks
Container

o

We want to know whether there is any difference
among the four containers in their ability to
malntain the temperature of a hot liquid for 20
minutes. If we write w, for the mean tempera-
ture difference for container k, then the null hy-
pothesis is that these means are all the same:

Hot g = po = s = pg.




Two-Factor Analysis of Variance

Another student, who prefers the great outdoors to damp pub basements, wonders whether leav-
ing her tennis balls in the trunk of her car for several days after the can is opened affects their per-
formance, especially in the winter when it can get quite cold. She also wonders if the more expen-
sive brand might retain its bounce better. To investigate, she per[ﬂrmed a two-factor experiment on
brand and temperature, using two brands and three levels of temperature. She bounced three balls un-
der each of the six treatment conditions by first randomly selecting a brand and for that ball, ran-
domly selecting whether to leave it at room temperature or to put it in the refrigerator or the

Daniel KaplanMacalester College ()




Two-Factor ANOVA with Interaction

In Chapter 28 we looked at how much TV four groups of students watched on average. Let's look
at their grade point averages. Back in that chapter, we treated the four groups (male athletes, fe-
male athletes, male non-athletes and female non-athletes) as four levels of the factor group. Now
we recognize that there are really two factors: the factor sex with levels male and female and the fac-
tor varsity with levels yes and no. Let's analyze the GPA data with a two-factor ANOVA.

=] =
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Chapter 29 Multifactor Analysis of Variance 647

What Can Go Wrong? * Beware of unreplicated designs unless you are sure there is no interaction.
Without replicating the experiment for each treatment combination, there is
no way to distinguish the interaction terms from the residuals. If you are de-
signing a two-factor experiment, you must be willing to assume that there is
no interaction if you choose not to replicate. In such a case, you can fit an ad-

Chapter 29 Mutifactor Analysis of Variance 647 : o ) o

What Can Go Wrong? *

theres
St b 1fyou are de-
signinga two-

: eplca. Insuch & ase,
7 1o it will show up

and the decision not o eplicate.

mpt
youhavean uneplised oot experiment o caeryaticna sty
ol find that if you try to fitan interaction term you'll get

ANOVA e, T s a4 g of eadonfor e  king

the interactions leaves no degrees of reedom for residuals. That wipes out the.
‘mean square errors, F-ratios, and P-valucs, which may appear n the com-
dash wrong,

Remove the interaction term from the model and try again
Be sure to fit an interaction term when it exists. When the design is epli-

Destitally fgnilant, Yo ca e 4 implee o fcios ma R iace
model instead.

interac-

o tefn: Laok t this neracion ok

An ineracion.plot o yild by e

o
2%
in
il s 1 st v s
g oy S e
o s i ST
.n i
o ign
20 L
e
Gk

hard to discern any effect, whether it exist or not. Use the partial boxplots to

search for outlcrs. Consider setting outlers aside and re-analyzing the re-

sults. An outler can make an interaction term appear significant.For exam-

ple, iy athlete with a very low GPA could for the
esults we saw:

heck for skewuness. 1f the underlying data distributions are skewed, you

A
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What Can Go Wrong?

Imagine a physics book that presented a formula for the position versus
time of an object:

1
x(t) = xo + vot — 59.8t2

and then warned: What can go wrong?

@ There might be friction due to air resistance.
® The wind might move the object.

© The earth might be spinning, and centrifugal or Coriolis forces might
be playing a role.

O The object might have a jet engine attached.

@ If the distance is very far, then gravity isn't a constant.

Daniel KaplanMacalester College () Statistical Modeling As Part of Science August 4, 2010 at CWSEI 29 / 59



|
What can go wrong?

You can be too cautious.

From Brown and Kass, The American Statistician, May 20009:

“Somehow, in emphasizing the logic of data manipulation, teachers of
statistics are instilling excessive cautiousness. Students seem to develop
extreme risk aversion, apparently fearing that the inevitable flaws in their
analysis will be discovered and pounced upon by statistically trained
colleagues. Along with communicating great ideas and fostering valuable
introspective care, our discipline has managed to create a culture that
often is detrimental to the very efforts it aims to advance.”
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The Standard Curriculum

Statistics is introduced to science students in two main ways:
e As methods in class lab notes.

e In a semester-long class.

Slightly fewer than half of biology majors at the top 25 USNews colleges
require statistics. Hardly ever by chemistry, physics, mathematics.
Methods covered in a conventional course:

@ Description of a variable using mean and standard deviation.
@ Standard error of the sample mean.

© Standard error of the difference between two sample means.
O Simple regression (y = a+ bx model).

@ Hypothesis testing in these settings.
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AP Statistics

e The College Board's AP Statistics exam is taken by more than
100,000 students per year, and growing at about 15% per year.

e Computers are not allowed on the exam, but calculators are.

e Students are given formulas and tables for use on the exam.

Formulas and Tables

Students enrolled in the AP Statistics course should concentrate their time and effort
on developing a thorough understanding of the fundamental concepts of statistics.
They do not need to memorize formulas.

The following list of formulas and tables will be furnished to students taking the
AP Statistics Exam. Teachers are encouraged to familiarize their students with the
form and notation of these formulas by making them accessible at the appropriate
times during the course.

Source: CollegeBoard AP Statistics Course Description, May 2009, May 2010
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Example: AP Statistics Test Formulas

|. Descriptive Statistics

R = 2 y = bo + b1x
Sy = \/ﬁ S (xi — %)2 — Z(g(X,)()}:,) y)

o m—1)s2+(ny—1)s3 - -
5=\ e | =7~ bi%

() () [t
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More AP Formulas

[1l. Inferential Statistics
e Standardized test statistic:

statistic — parameter

standard deviation of statistic

e Confidence interval: statistic & (critical value) x (standard deviation
of statistic)

Single-Sample

Ger Standard Deviation
Sliiftite of Statistic
o
Sample Mean n
Sample Proportion P (ln_ D)
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More AP Formulas (cont.)

Two-Sample

Standard Deviation

Statistic of Statistic

Difference of o o

sample means n oy

Special case when
o, =0,

T
oo
Difference of n(d-p1), p2(1-p»)
sample proportions ny Ny

Special case when
p, =D,

Vp(1-p) L+,%

nl 2

(observed — expect;ed)2

Chi-square test statistic = 2 expected
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Still more AP technology

Probability
Table entry
for 2 is the
probability
lying below z. P
Table A Standard normal probabilities
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
-34 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
-3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
2N nn12 nn12 nn12 nn19 nn19o nnt1t nnt1t nn11t nnin nnin
Table B ¢ distribution critical values
‘Tail probability p
df .25 .10 .05 .025 .02 .01 005 .0025 .001 0005
1 1000 1376 1963 3.078 6314 1271 1589 31.82 63.66 127.3 3183 636.6
2 816 1.061 1.386 1.886 2920 4.303 4.849 6.965 9.925 14.09 2233 31.60
3 A765 1 250 1 638 2.353 3 182 3 482 4 541 5.841 7453 10.21  12. 92
9129 A RNA R ROQ 7172 QA1
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A Revision of Pedagogy

The formulas presented in textbooks stem from simple rules about sums
and averages of random variables:

e Means add and scale.
e Variances add.
e +/Variances scale
and the “Central Limit Theorem”
e Sums of random variables tend to be normal (gaussian).

This is overly abstract for many students, limited to statistics that are
about addition and scaling (e.g., the mean), doesn't acknowledge the
asymptotic nature of the central limit theorem.

New distributions, e.g., the t-distribution, are introduced to cope with the
limitations. The origins of these distributions are beyond the algebraic
capabilities of most researchers.
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Making Statistics more General and Accessible

Focus on Sampling, Resampling, and Bootstrapping.

e The sample has been drawn at random from the population.
e A different random sample would have different properties.

e Strategy: Draw many samples and look at their distribution.
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Example: Runners' Speeds
Results from a 10-mile road race in Washington DC:

> run = ISMdata("ten-mile-race.csv")
> shuffle( run, 5)

state time net age sex
8255 MD 6440 5996 49 F
7433 VA 6144 5843 39 F
3911 DC 8078 7926 55 M
6421 VA 5072 4826 32 F
3644 MD 5093 5093 52 M

Suppose you had randomly sampled n = 500 runners from the population
and found their mean running time:

> oursamp = shuffle( run, 500 )
> with( oursamp, mean(net) )

[1] 5619.318

How precise is that estimate of the mean?
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Repeating the Sampling

Strategy: Draw new samples and examine the distribution of their means.
> with( shuffle(run, 500), mean(net))
[1] 5563.568

> with( shuffle(run, 500), mean(net))
[1] 5557.878

Or, more fluently:

> s = do(500)*with( shuffle(run, 500), mean(net) )
> head(s)

[1] 5520.808 5582.192 5662.078 5607.102 5632.574 5570.548
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Results of Repeated Sampling

In the form of a “standard error”:

> sd(s)
[1] 42.20524
[{e}
z 8
In the form of a 95% confidence g e
interval: a °
> tile( (.025, .975) ) R
quantilel s, ct. > 5450 5550 5650 5750

2.5% 97.5%
5518.210 5679.601

Sample mean (n=500)
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____________________________
But ... You Only Have One Sample

e It's too expensive to draw multiple samples from the population.
e We need to infer the population properties from our sample.

e Strategy: Assume that the population is just like our sample, but
larger. Sample from the sample: Resampling.

Example:

> samp = c¢(1,2,3,4,5)
> samp

(11 12345

> resample (samp)

[1] 51534

> resample (samp)

[11 4225 4

> resample (samp)

[1] 52353
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Example: Bootstrapping the Mean of the Running Data

The sample statistic:

> with( oursamp, mean(net) )
[1] 5619.318

And bootstrap replications:

> with( resample(oursamp), mean(net) )
[1] 5638.604
> with( resample(oursamp), mean(net) )
[1] 5639.026

To find the standard error:

> 52 = do(500)*with( resample(oursamp), mean(net) )
> sd(s2)

[1] 44.42675

Compare to the standard deviation of 42.2 from repeated sampling from
the population.
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Controversy in Pedagogy!

What you have just seen is widely used by professionals, but controversial
in introductory statistics.
Objections:

@ It's too much trouble and too hard to teach computation.
® Our job is to teach statistics, not computation.

©® The formulas make the structure more apparent. Algebra =
understanding.

But:
@ Lots of students don't understand algebra.
@ The formulas obscure the process that underlies the results.
©® The formulas aren't general enough.
@ The logic can be applied to more “advanced” methods that are
important to scientific reasoning.
@ The simplicity of the logic provides a means to check that your results

are reasonable, rather than relying on the authority of the formulas
and the tables.
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Hypothesis Testing

The dominant paradigm in statistical presentation in research.

e The Null Hypothesis is a statement that “nothing is going on," e.g.,
that two groups are the same.

e The p-value is the probability of seeing what you got in your sample

in a random sample DRAWN FROM A WORLD WHERE THE NULL
IS TRUE.

e “Statistical Significance” refers to a low p-value. It need not have
anything to do with significance in a practical sense.
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Example: Running and Age

Is there reason to believe that older runners are slower than younger
runners?
Simple Regression

A model of the form y = a + bx. Find coefficients a and b to come “close”
to the data: Least squares.

> Im( net ~ age, data=oursamp )

Call:
Im(formula = net ~ age, data = oursamp)

Coefficients:
(Intercept) age
5306.782 8.398
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How Precise is the Estimate?

Use resampling to find the standard error:

> s = do(500)*1m(net ~ age, data=resample(oursamp) )
> head(s)

(Intercept) age

1 5000.632 15.233969
2 5361.747 6.353013
3 5212.665 11.487076
4 5221.674 10.557205
5 5375.525 7.275790
6 5258.825 8.150656
> sd(s)

(Intercept) age

151.872824 3.979957

So, 8.398 £ 7.96
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____________________________
A Hypothesis Test

Create a world in which the null hypothesis is true.
e Scramble the “age” variable with respect to the outcome.
This is called a Permutation test

> Im( net ~ shuffle(age), data=oursamp )

(Intercept) shuffle(age)
5904 .499654 -7.662878

> Im( net ~ shuffle(age), data=oursamp )

(Intercept) shuffle(age)
5576.503478 1.150433

> s = do(500)*1m( net ~ shuffle(age), data=oursamp )
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The p-value

How often does a sample from the Null Hypothesis world show a stronger
pattern tiBn seen in the actual sample?

o —
AN

Frequency
100
I

(N D N B
-15 -5 5 15

Age Coefficient (seconds/year)
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Statistics and Science

Statistics is commonly seen as a gatekeeper rather than a guide.
@ p-values must be < 0.05 for publication.
® The Null Hypothesis is not of direct interest.

© Examining multiple hypotheses (“data mining”) is seen as a way to get
around the gatekeeper.

O De-emphasis of effect size in favor of p-value, r.

We need to teach statistics in a way that inspires scientific thinking:
@ Examine hypotheses of interest.
® Compare multiple hypotheses.

© Deal with more complicated situations than differences of group
means or simple slopes.

O Deal with the vast amount of observational data becoming available,
e.g. genetic microarrays. Science is less and less about the n =3
experiments of Fisher's day.
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Statistical Policing

From Xiao-Li Meng, chairman of the Harvard statistics department, in The
American Statistician, Aug. 2009:

“We statisticians, as a police of science (a label some dislike but | am
proud of; see the next section), have the fundamental duty of helping
others to engage in statistical thinking as a necessary step of scientific
inquiry and evidence-based policy formulation. ..."

7. THE NEED TO INCREASE SCIENCE POLICING TO COMBAT
“INCENTIVE BIAS”

“My worry, however, is that we are far behind in instilling the appropriate
level of caution in scientists and their students. Too many false
discoveries, misleading information, and misguided policies are direct
consequences of mistreating, misunderstanding, and mis-analyzing
quantitative evidence. ... | am referring to honest mistakes made by
scientists and policy makers, mistakes that could easily be avoided or
caught if they themselves had been ‘instilled” with an appropriate amount
of statistical thinking and caution.”

Daniel KaplanMacalester College () Statistical Modeling As Part of Science August 4, 2010 at CWSEI 51 / 59



|
Example: Energy Use by a Household

month year temp kwh ccf thermsPerDay dur

1 2 2005 29 557 166 6.0 28
2 3 2005 31 772 179 5.5 33
Question

Is there reason to think that electricity use offsets natural gas used for
heating? (Will telling my kids to turn off the lights actually reduce CO>
emissions?)

Physical Theory

Electricity use is a form of energy. Ultimately, it is converted to thermal
energy. It contributes to heating the house and so should offset the need
for other forms of energy for heating.

Unit conversion: 1 therm equals 29.3 kWh, so 1 therm per day equals
0.0011 kWh per month of electricity.

v
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Data Analysis

@ Pull out only the months when heating is an issue:
> heating = subset(utils, temp<= 60 & thermsPerDay > 0.8)

® Build a model of therms per day vs electricity use:
> summary (1m( thermsPerDay ~ kwh, data=heating ) )

Estimate Std. Error tvalue Pr(>]t|)
(Intercept) 3.9223 1.1365 3.45 0.0010
kwh 0.0002 0.0015 0.13 0.8959

The p-value says we can't distinguish the coefficient from zero.
Conclusion: The data provide no evidence for a relationship between
electricity and natural gas use.
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That Conclusion is Wrong]!

The analysis in the previous slide uses the techniques taught in
introductory statistics.

Focus on the null hypothesis and the p-value.

However, we have a specific alternative hypothesis, that the coefficient
on kWh should be 0.0011.

The 95% confidence interval is 0.0002 £ 0.0031 which includes the
unit-conversion hypothesis.

Just one explanatory variable (kWh in this example).

But there are all sorts of factors that contribute to heating use:
temperature, wind, humidity, ... not just electricity use.
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Constructing a More Inclusive Model

We have a measure of average monthly temperature. Let's use it!

> Im( thermsPerDay ~temp+kwh, data=heating )

Estimate Std. Error tvalue Pr(>]t|)

(Intercept)  10.2959 0.4381 23.50 0.0000
temp  -0.1419 0.0059 -23.92 0.0000

kwh  -0.0014 0.0005 -2.96 0.0044

The association between kWh and natural gas use is “significant” and quite
consistent with the physical theory: —0.0014 4 0.0010.
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Models and Conventional Statistics Education

Some reasons why modeling doesn't fit into the paradigm of conventional
introductory statistics.

e The formulas are too hard. (They rely on inverses of covariance
matrices, not accessible to typical statistics students.)

e There's not a unique, correct answer (since there are many different
ways to model something) . In order to explain why there are many
answers, new topics need to be covered, e.g., collinearity. There's not
time for this and the conventional topics.

But
e Computer simulation works just as easily with models as with means.
e The conventional topics are mainly just special cases of modeling.

e Many of the conventional methods were introduced to make
computation accessible before modern computing. Now they are
enshrined in the curriculum.
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Example: SAT Scores and Expenditures
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Skills for Statistical Reasoning

@ The idea of a model and fitting models to data.

® What models are for. “All models are wrong but some are useful.”
(George Box)

© Precision of estimates reflecting

@ Sample size n
@ Size of residuals (and how to reduce them with covariates)
©® Collinearity among explanatory variables.

O Accuracy of estimates reflecting covariates, untangling, bias due both
to sampling and model (mis)specification.

It's fine for students to see that different models give different results.
Insight is gained by comparing different results.
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Summary

e Statistics is taught to emphasize “gatekeeping” rather than exploration
of hypotheses.

e Standard introductory methods are inadequate except for extremely
simple system.

e Modeling involves an important set of skills for doing science.

e By bringing together modeling and modern computation, we can
teach statistics in a way that meshes with the scientific method rather
than standing distant from it.
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