

Using the CWSEI Approach to Updating Computer Science Systems Courses

Donald Acton — acton@cs.ubc.ca

Department of Computer Science, University of British Columbia

BACKGROUND

Over the last 2.5 years we have been applying the CWSEI approach to modifying the primary Computer Science systems courses. These courses are: CPSC 213 (Introduction to Computer Systems), CPSC 313 (Computer Hardware and Operating Systems), and CPSC 319 (Internet Computing).

All computer science majors are required to take CPSC 213 and except for a few combined majors all are required to take CPSC 313. CPSC 317 is an elective course in computer networking taken by well over half our students. Given our limited resources (1 person @ 20%) we focused on undertaking transformations and interventions that have worked well in other disciplines.

Learning Goals and Baseline Data

In all the courses we:

- Articulated the course level learning goals
- Articulated the finer grained learning goals
- Undertook pre- and post- course attitudinal and surveys and identified key exam questions to provide baseline data

Tapic	ID	Learning Goals Students Can
ALU/Registers/	Α1	Describe a basic computer with basic components (ALU, Registers, Memory) and explain how instructions execute and data flows.
Vernory		
Machine Level	B1	Trace execution of a simple C program and translate to a set of machine level instructions to emulate that C program
	B2	Identify and group Gold Assembly instructions based on their utility for programming(control flow of execution, access memory, arithmetic operations, etc.)
	B3	Describe in what ways instructions and data are the same at the bit level.
	B4	Translate a Gold Assembly instruction into machine representation (in bits)
	B5	Decipher according to Gold Assembly language rules the various parts of an instruction (opcode, operands, etc) from the bit
	B6	Identify what information is available to an instruction statically and what must be calculated dynamically at run time. For example, instructions are created ahe
		and are static but that the data they access, including the memory addresses to be accessed may be only calculated or available at run time
	B7	Recognize that subtracting a number from another involves taking the twos complement of the number and adding it. Be able to apply the principles of twos cor
		implement sign extension.*
	C1	Describe the minimal set of addressing modes needed for an instruction set to be complete.
	62	Compare and contrast various addressing modes law, the limitations of not supporting a particular mode in an instruction set, why dynamically generated address

EXAMPLE SURVEY QUESTIONS

- organization needing improvement
- Exam questions results correlated to interventions to identify what works and what doesn't
- These measurements are being used to iterate over our course changes

The work in these courses has been in part undertaken by: Mike Feeley (213/313), and George George Tsiknis (213/313), Bill Aiello (317), Donald Acton (313/317). Norm Hutchinson has also provided valuable comments and suggestions

	Improving Student Feedback				
00004	 Visually feedback assessment a Learning catalytics - promotes GIT - Source code control - allo student progress and ability to feedback Scanned Exams & Assignment re organized feedback 	self reflection ws closer mon provide more f	in real time itoring of timely		
→ C Q					
	rovince of British Construction UBC Student Services 🛛 🔚 Apple 📄 News 👫 31	7CWSEI	» 🔲 Other Bookmarks		
arning als	Endianness, memory-address alignment, and bit-level manipulation	64% 50% 63%	Assignments Quizzes Midterm		
	Memory reference counts and address calculations from a C program	75% 71% 63%	Assignments Quizzes Midterm		
	Machine instruction implementation	62% 50%	Assignments Midterm		
	Machine model for global variables; static and dynamic arrays	37% 75% 25%	Assignments Quizzes Midterm		
	Machine model for global variables; static and dynamic arrays Pointers in C, & and * operators, and pointer arithmetic	75%	Quizzes		

Instructor Resources

Documented course timelines:

If statements and loops

Dynamic storage allocation and deallocation

Recorded lecturers to provide future instructors an opportunity to observe how content is presented and the amount of time used • Complete set of lectures time materials and assignments

February 16	
9:38 - 10:16	I was concerned that I wasn't going to have enough material for this lecture. But, this exercise took way longer than expected, but in a good way. All the students really worked on the problem. There was good interaction between students and lots of debate Although it went way longer than I expected, I think it was a really good activity. There was quite a bit of confusion about how GBN and SR really worked and I think this activity really allowed them to explore that.
10:26 – 10:46	The great thing about this activity was that when it was finished students seemed really interested in how to go about solving the problem. I think this might have been because they had to struggle with how to think about and organize things so they were ready to "receive" the answer

Assignments Quizzes

Assignments

Midterm