

Can Videos of Active Teaching Strategies Support Faculty Adoption of Research Based Instructional Strategies?

~

FoS Education development Openhouse April 2015

Francis Jones Earth, Ocean & Atmospheric sciences

*This slide-set licensed under Creative Commons, attribution non-commercial share-alike.

Contact: Francis Jones, Science Teaching and Learning Fellow, EOAS, UBC, fjones@eos.ubc.ca

In answer to ...

- I can't IMAGINE teaching that way!
- There's no time to watch OTHER teachers work.
- I wouldn't DARE ask to observe a classroom.
- Every class is different how can I catch the BEST one?
- Students will wonder why I'm there.
- That would never work in MY discipline.

Videos of "exemplary" practice in action

- Formal permission from instructors AND students.
- Variety of disciplines, settings & strategies.
- Whole class filmed often with two cameras.
- Careful production to emphasize keys to success.
- Accompanying resources and references.
 - What to observe in videos
 - Context and instructor's notes
 - Resources shown
 - References

Design criteria

- 1. ~6 minutes each
- 2. Instructors' voice but minimal talking heads.
- 3. Student voice but no simple endorsements.
- 4. Minimal 3rd party "voice-over".
- 5. Visible evidence of best R.B.I.S. practices in action:
 - active students; peers interacting; "deliberate practice";
 expert / novice interactions including feedback; others ...
- 6. Help viewers to ...
 - set realistic expectations for specific teaching strategies;
 - imagine themselves in these roles (students & instructors).
- 7. Details in accompanying written content.
- 8. Variety of settings: math, geoscience, physics, etc...)
- 9. Enable communication (comments & questions)

Collection "packaging" – the website http://blogs.ubc.ca/wpvc/

1. Short lab + follow-up active class

- EOSC; 3rd year science majors
- 150 students
- professional production

2. Worksheets + video, twice in one class

- EOSC; 1st year all students
- 300 students
- professional production

3. Clickers, group work; a math "proofs" course

- MATH; 2nd year math majors
- 60 students
- professional production

4. Real-time clicker qn's and worksheets

- EOSC; 3rd year science majors
- 150 students
- amateur production

5. Two stage exams in large classes

- 1st year all students
- 350 students; lecture
 - amateur production

6. Clickers + group work, etc; physics 100

- PHYS; 1st year science majors
- 250 students
- professional production

7. Framework/capstone/jigsaw activity

- EOSC; 2nd year geoscience majors
- Pairs + large groups in 50 minutes
- 90 students
- Professional production

Your preferences for "useful" videos:

- Development directions depend on user's needs.
- Your opinions can help prioritize further work.

Current video clip examples

- 1. Lab setting and active-class follow up strategies
 - Paleontology for 3rd year science majors
- 2. Basic group work strategies
 - Natural Disasters for all 1st year students
- 3. Math class group work and follow up
 - Mathematical proofs for 2nd year math majors
- 4. Tutoring with worksheets real time clicker questions
 - Climate change for 3rd year science students
- 5. Two stage exams in large classes
 - Natural Disasters for all 1st year students
- 6. Physics 100
 - Worksheets in an active class
- 7. A framework-concept capstone activity
 - 50-minute activity including pairs and large groups

References and resources

- http://eos.ubc.ca/about/faculty/F.Jones.html
- http://eos.ubc.ca/research/cwsei/
- http://cwsei.ubc.ca/
- "Wisdom can't be told" ... Gragg, 1940, quoted in
 Bransford, John D., Franks, Jeffery J., Vye, Nancy J., & Sherwood, Robert D. (1989). New approaches to instruction: Because wisdom can't be told. In Vosniadou, Stella & Ortony, Andrew (Eds.), Similarity and Analogical Reasoning (pp. 470–497). Cambridge: Cambridge University Press.
- Dancy, M. & Henderson, C. (2008, October) "Barriers and Promises in STEM Reform", Commissioned Paper for National Academies of Science Workshop on Linking Evidence and Promising Practices in STEM Undergraduate Education, Washington, DC, Oct 13-14, 2008.

 http://homepages.wmich.edu/~chenders/Publications/Dancy Henderson CommissionedPaper2008.pdf
- Froyd, J.E.; Borrego, M.; Cutler, S.; Henderson, C.; Prince, M.J., "Estimates of Use of Research-Based Instructional Strategies in Core Electrical or Computer Engineering Courses," Education, IEEE Transactions on, vol.56, no.4, pp.393,399, Nov. 2013. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6466402&isnumber=6648697
- **Wieman, C., Deslauriers, L., and Gilley, B.,** "Use of research-based instructional strategies: How to avoid faculty quitting", Phys. Rev. ST Phys. Educ. Res. 9, 023102, 2013. http://prst-per.aps.org/abstract/PRSTPER/v9/i2/e023102
- **C. Wieman, K. Perkins, and S. Gilbert,** "Transforming science education at large research Universities: A case study in progress", Change 42, 6, 2010. http://www.tandfonline.com/doi/full/10.1080/00091380903563035#.UvGBvLTZ7 Q
- Pamela D. Sherer, Timothy P. Shea, Eric Kristensen, "Online Communities of Practice: A Catalyst for Faculty Development", Innovative Higher Education, Volume 27, Issue 3, pp 183-194, 2003. http://link.springer.com/article/10.1023/A:1022355226924