A two-stage review activity for the first day of class

E. Jane Maxwell^{1,2}, Chad Atkins¹, Dan Bizzotto¹, and Carl Wieman²

¹ Department of Chemistry
² Carl Wieman Science Education Initiative

Two-stage review: Context

- CHEM 311: Instrumental Analysis
- Demographics:
 - Chemistry majors and honours (~90 students)
 - Bachelor of Medical Lab Sciences (~25 students)
- Challenge: Significant variation in students' background knowledge
 - Differing levels of achievement and differing emphases in the common prerequisite course
 - Students' background in Electricity & Magnetism is generally weak
- First day of class would typically include only a brief introduction to new material

Why use a two-stage review?

We agreed to use the two-stage review activity to address the following goals:

- 1. Capture a snapshot of students' understanding of key concepts
- 2. Provide students with immediate feedback & clarification on their background knowledge
- 3. Give students a low-stakes opportunity to experience the dynamic a group test (in prep for two-stage midterm)
- 4. Mix the two student cohorts
- 5. Have a productive first day of class!

Developing the two-stage review activity

- 1. Identify the topics and key concepts
 - Brainstorming with instructor, lecture TA, and STLF
 - Topics and concepts from 2nd-year prerequisite and 1st-year physics (E&M)
- 2. Develop a set of multiple-choice questions (18 Qs)
 - targeted at a "quiz" level rather than "final exam" level

Example:

Which of the following changes will <u>increase the intensity</u> of the light beam reaching the detector of a standard absorbance spectrophotometer?

- a. Decreasing the intensity of the light source
- b. Diluting the analyte solution
- c. Using a sample cuvette with a longer path length
- d. Reducing the slit widths of the monochromator
- e. More than one of the above

The first day of class: Organization

- Students assigned to groups of 5
 - rearranged into groups during a 5-minute break
- We explained the activity and repeatedly emphasized it was <u>not</u> for marks, but to help them assess their background understanding
- Individual review: Scantron sheets, 15 min
- Group review: same questions, "Immediate Feedback Assessment Technology" (IF AT) cards, 15 min

The first day of class: How did it go?

- Groups appeared engaged in good discussions about concepts
- Despite being slightly rushed, nearly all groups finished
- Attitudes during and afterwards were generally positive ("That was fun!")

What we learned: Strengths and weaknesses

What we learned: Strengths and weaknesses

What we learned: Strengths and weaknesses

3 major categories of questions:

- Majority <u>correct</u> students receive feedback from peers →100%
- 2. Majority <u>incorrect</u> target for clarification by instructor
- 3. Majority of *groups* incorrect identify widely-held misconceptions

What we learned: Persistent misconceptions

Which of the following statements about glass pH electrodes is/are FALSE ?	Individua I		Group	
	N	%	N	%
a) The glass membrane acts as a salt bridge	17	18%	2	9%
b) Hydronium ions (H ₃ O ⁺) from solution are in equilibrium with hydronium ions bound to the glass surface	18		7	
c) The glass electrode must be filled with a solution of fixed pH	5		5	
d) The relationship between pH and voltage is linear	38	40%	19	83%
e) More than one of the above	18		13	

What we learned: Lessons to carry forward

- Consider your class composition when setting groups
 - Very important in our case to maximize heterogeneity
- Be persistent in prompting students to sit in a formation conducive to group discussion
- Follow-up with students:
 - We provided the questions and detailed explanations of correct AND incorrect answers on Connect
 - In the future: use Connect gradebook feature to tailor feedback for students
- Overall, the activity was easy to prepare and implement, and provided both us and our students with valuable information