Developing a Formative Assessment
of Instruction for the Foundations of
Computing Stream

Acknowledgments: Help, data, and input from many faculty and students at UBC.

Inspiration

Average approval rating of lab media

SA

HH

—e— The Magic Box (breadboard kit)
—=— TKGate (simulator)
Logisim (simulator)

SD -

I T T

2010-Spr 2010-Sum 2010-Fal 2011-Spr 2011-Sum 2011-Fal

From Patitsas aAd Wolfman, SIGCSE 2012

From Mazur, Int’l Newsletter on Physics Ed, Apr 1996

But about a year ago, I came across a series of articles by David Hestenes of
Arizona State University(1) that completely and permanently changed my views
on teaching. In these articles, Hestenes shows that students enter their first physics
course possessing strong beliefs and intuitions about common physical
phenomena. These notions are derived from personal experiences and color
students' interpretations of material presented in the introductory course.
Instruction does very little to change these "common-sense" beliefs.

|deal Goal

Sustainable assessment as a “thermometer” for health of the courses.
What makes it sustainable? Let’s look at the FClI:
* 29 multiple choice Qs and takes 23.3 minutes

* Founded on previous/ongoing physics ed. research
* Focuses on a few key topics

* Deliverable on paper (if needed!)

A heavy ball is attached to a string and swung in a
circular path in a horizontal plane as illustrated in - "

the diagram to the right. At the point indicated in the .+’ S, (B)
diagram, the string suddenly breaks at the ball. If YT
these events were observed from directly above, ; IR
indicate the path of the ball after the string breaks. v TJ’ ’

) pe

\ S

Methodology

Gather goals by interviewing faculty involved in the stream
Augment & winnow goals by analysis of exam results

Draft questions to assess key goals

Validate expert responses to questions

Collect student misconceptions in think-aloud interviews

Formulate forced-answer versions of Qs based on student
responses

Validate forced-answer Qs in think-aloud interviews
Pilot assessment, confirming reliability and validity

General use for assessment of courses, longitudinal
analysis, etc.

How do we assess these??
Grand Goals...

What are the key learning goals for the Foundations of

* Recursive/inductive thinking

e Analysis of resource (time, space, energy, ...) costs o
solutions

Formalization/specification of ill-specified problems
Comfort with “dense” formal descriptions

* Proposal and explanation of multiple solution
approaches to a problem

* Meta-cognitive management of the solution process

* Generalizing/abstracting problems/sol’n properties

...to Assessable Goals (?)

“Think about times when you cringe
inside because your students just
don’t get something that seems very
important to you, and which you
expect any expert to get.”

+

Quick review of low-/mid-/high-
scoring exams.

Induction (6/2/-1): “should be able
to do .. themselves from scratch
without requiring additional input”

Divide & Conquer / Recurrences /
Dynamic Programming (4/0/-3):
“express the solution to a problem in
terms of subproblems”

Logarithmic Tree Height (3/0/-0):
“How many times can | give away
half my apples before being left with
just one?”

0.732222744
0.705661765
0.688011564
0.617412418
0.705661765
0.732222744

0.6836033
0.683545973
0.705661765
0.700276696
0.653105503
0.659589036

0.595117345

0.6836933
0.5951173845
0.661328656
0.638011564
0.661328656
0.653105503
0.617412418
0.628239728
0.628239728

Exam Analysis: Low Mean

0.199122807
0.32254902
0.41087963

0.203191489

0.464705882

0.346052632

0.476911977

0.466569767

0.508235294

0.494318182

0.458815029

0.476293103

0.433333333
0.476911977
0.569444444
0.618253968
0.5348821549
0.708333333
0.502023121
0.541843972
0.439393939
0.686363630

| Unweighted Mean| | Problem Mean| ~ | Problem Correlation| =

0.391418802
0.374684015
0.5343997301
0.572218428

0.50537874
0.520803062

0.79708724
0.624281229
0.353694093
0.646238294

0.56689642
0.450958138

Adjusted Mean |-/
-4.205337015
-2.668872943
-2.203896611

-2.02542582
-1.678567584
-1.468595307
-1.439631886
-1.333294823
-1.275329253
-1.374351207
-1.273761376

-1.232959284

Topic

Heap/Asymptotic Analysis (2 variable analysis, find k-th smallest in n nu
Asymptotic Analysis/ADTs ("dictionary dora" question, sketch behaviour
Induction Proof ([open-ended, strong, code-based (Racket-ish recursive |
Heaps (complex problem troubleshooting)

Combinatorics (order doesn't matter, replacement, "at least 10" limited
Functions {MC, cardinality, injection/bijection/surjection, pigeonhole)

P vs. NP [show prob in P, show prob in NP, reduction from 1S)

Working Computer (newer, open-ended, somewhat similar to 2010W2.9
Sorts/BSTs/Heaps (open-ended asymptotic analysis in interesting situati
Memory management/Sorting algorithm {C++, space complexity)
Predicate Logic Proof (open-ended, direct, EEA, big-0 like)

Sorting Algorithms (selection and quick comparison)

High Correlation

Unweighted Mean| = | Problem Mean| = | Problem Correlation| -+

0.811163781
0.79708724
0.796360036
0.796029275
0.791351467
0.781922156
0.779417012
0.770617916
0.7652708
0.747336038

Adjusted Mean | -
-0.7858715638
-1.439631886
-0.124709063
-0.234615294
-1.106511058

0.256020793
-0.990490672
-0.4538006015

-1.04917734

0.222921087

Topic

Induction Proof (strong, open-ended, dividing stack of a+b scores a*b bu
P vs. NP [show prob in P, show prob in NP, reduction from IS)

Functions (closed-ended MC-ish, pre-image/image/injective/surjective,
Miscellaneous (MC)

Working Computer/Seq'l Circuit (open-ended + MC, similar to parts of se
Functions [MC + brief justification, injective/bijective/surjective)
Induction Proof (open-ended, strong, base case given, triangulation, ven
Parallel Algorithms/ADTs (really about linked lists (no random access) an
Induction Proof (strong, open-ended, dividing stack of a+b scores a*b bu
Functions Proof (open-ended, prove or disprove, somewhat similar to 20

Interview Analysis Examples

We often draw diagrams of binary search trees like this one: ((tl/\e va {M es are IOOI'V\ted tO or StO V'@d

‘ in the same node object”
“The value [are] stored in these
(<) () bubbles’
“the values would reside in memory
or on disk”

“So the values are.. in the nodes’’

We have shown the keys but not the values in this tree. Where are the values?

“the values should be 1, 2, 3, 4, 5, so they're index values ... 6, 7, 8”
“... an array ... the keys could just be the indices of a giant array”
“[the key is] a lookup for the value”

“the values are being represented in the tree by the keys. So knowing ...
the key like unlocks ... what the value is”

“the values would actually be in the leafs”

We often draw Binary Search Trees (BSTs) like this, 0
showing the keys but not the values:

The keys in this BST are numbers; H H
[assume that the values are as well OR
assume that the values are images].

Where are the values in such a BST?
Choose the best answer.

(a)
(b)
(c)
(d)
(e)
(f)
(8)

(h)
(i)

The values are stored in the same node as the keys.

The values are at the leaves.

The values are pointed to from the same node as the keys.
The keys are indices into an array that stores the values.
The keys point to the values.

The values are represented in the tree by the keys.

The values are 1 (for the node labeled 7), 2 (for the node labeled 4), 3 (for the
node labeled 10), 4 (for the node labeled 2), and so on.

Not enough information to tell.
| don't know.

Imagine you were creating a dance. Here's a procedure you could use to describe the dance:

Dance(mn) :

ifn=1:
walk forward 1 meter,
turn left (by %0 degrees)

else:
do the steps in Dance(n - 1),
turn right (by 90 degrees),
do the steps in Dance(n - 1).

Let M(n) be the number of meters of walking you have to do in the dance. So, M{1)=1.

Give a formula for M{n) that is correct for alln= 2. (Thatis, forn =2, 3, 4, and all larger values.) Your
formula can and should be in terms of M().

Imagine you were creating a dance. Here's a procedure you could use to describe the dance:

Dance(n):
ifn=1:
walk forward 1 meter,
turn left (by 80 degrees)

else:
do the steps in Dance(n - 1),
turn right (by 90 degrees),
do the steps in Dance(n - 1).

Let M{n) be the number of meters of walking you have to do in the dance. 5o, Mf1)=1.

Give a formula for M(n) that is correct for alln= 2. (Thatis, forn =2, 3, 4, and all larger values.) Your

formula can and should be in terms of M[).

————_

T
_.____

“We first do one step, then M(n-1) steps...’ “...1t would always be reduced to 1

ultimately. Since it's just Dance(n-1) and
then t's just turning not really moving...”’

MG\) ((0) 1) for w27

Kahney, CHI 1983

SOLUTION-1+ SOLUTION-2:

TO INFECT /X/ TO INFECT /X/

1 NOTE /X/ HAS FLU 41 CHECK /X/ KISSES ?

2 CHECK /X/ KISSES 2 1A If Present: INFECT * ; CONTINUE
oA If Present: INFECT * ; EXIT 1B If Absent: CONTINUE

2B If Absent: EXIT 2 NOTE /X/ HAS FLU

DONE DONE

paragraph. Under the Loop model, however, a
programmer would argue that the first Solution
would be okay, but not the second. 1In

(, “If 'm correct, it would always
‘Starting at 4, you.. Do 4, turn b peduced to 1 ultimately.
right, do 3, turn right, do 2, Since it’s just Dance(n-1) and
turn right, walk forward 1 m, then it’s just turning not really
turn left. ... So only at one point oying..” and that wouldn't
will I do 1, that's when you walk affect™ . the number of metres
forward. So M(n) = 1.” that 've walked.”

Heap/BST Confusion? Never hinted at by

20

° ’ °
Draw a binary search tree whose keys printed in post-order traversal are: my fa C u Ity | V| eWS cee

20 15 30 25 75 90 80 65 50

We often draw diagrams of binary search trees like this one:

We have shown the keys but not the values in this tree. Where are the values?

In answer to “Why isn’t this a BST?”

“it's because ... the right only
has depth 1, while the left has
depth 3. ... BSTs should have
both sides equal depth. s that
a heap? It doesn't matter.”

Danielsiek et al. SIGCSE 2012

The central new insight with respect to heaps is that stu-
dents — even though they seem to have a rather good pas-
sive knowledge of the formal definition of a heap — tend
to conflate heaps with binaryv search trees. Since the vast

A: A heap is, er [laughs], a heap is a tree with an ordering

and, er, that’s hard to explain. Er, a binary tree.
. Let’s talk about binary trees, shall we?

. Binary trees are trees, all of them, which have, have
two children, that’s indicated by the word binary al-
ready, two, er, children, or two child nodes, at most
that is, we could also have null. Er, and the child
node, the one that’s stuck to the left, is smaller than
the the node itself and the one, the one stuck on the
right has a bigger value than the node itself and that’s
than kept up recursively and then we get, if we keep
hanging on to that thought, far, far, far doun on the
left the smallest one, the smallest element; far, far, far
on the bottom on the right is the biggest element.

B: Yes, the heap was like this, er. We put the first number

into the root and then we take the second number and
we check whether it’s bigger, er, than the root. If it’s
bigger, we write the number down on the right side,
and if its smaller, then we write it down on the left
side. And then we take the next number and do the
same again starting with the root, we check whether
it’s bigger. If it’s smaller, we go to the left again. And
then we take a look at the next. If this one is smaller
again then we will go to the left again of this one and
to the right if its bigger.

