Chemistry CWSEI Department Summary

This document summarizes the Chemistry Department's activities as part of the Carl Wieman Science Education Initiative over the years 2007-2017. In this initial version, it replaces a series of web pages that were updated over the lifetime of the CWSEI. It may be updated in future with more detail on impact.

For questions, please contact: Jackie Stewart (jstewart@chem.ubc.ca) or Warren Code (warcode@science.ubc.ca)

Contents

Overview	2
People	2
Activities	3
Overview of Activities	3
Course Evaluation & Redesign Phases	3
Additional Undergraduate Program Activities	3
TA Development	3
Courses	4
Education Research	9
Comparison of Oral and Written Laboratory Reports	9
Two-Stage Review	10
Analytical Chemistry Concept Inventory	10
Chemistry Concept Diagnostic Tests	
Organic Chemistry (CHEM 233) Learning Objectives Alignment Study	10
1st Year Practical Lab Skills	
CHEM 123 Lab Learning Goals	10
Attitudinal Survey	10
Presentations at national/international meetings	
Impact	
Transformed Course Counts	11
Impact in terms of seats/registrations	11
Publications and Presentations	
Related Department Links	

Overview

The Chemistry Department began work on CWSEI course transformations in 2008. Initially, the work focused on evaluating and redesigning the Chemistry 123 lab (Physical and Organic Chemistry).

In spring 2013, the second phase began, which focused on 1) analytical chemistry courses (CHEM 211 and 311), 2) third-year integrated laboratories (CHEM 315/325/335/345), and 3) Global Challenges, a Chemistry Perspective (CHEM 341).

The third and final phase of course transformations, beginning in spring 2016, will address Chemistry 208 (Coordination Chemistry), 218 (Fundamentals of Reactivity in Inorganic Chemistry), 233 (Organic Chemistry for the Biological Sciences), 300 (Communicating Science), and 327 (Introduction to Materials Chemistry).

In addition to CWSEI teaching initiatives, the department underwent an independently funded external review of our 1st year chemistry program. Mike Wolf, Derek Gates and Jackie Stewart have developed improved course support materials for CHEM 121 (tailored in-house textbook, homework sets, power point notes for instructors, etc.) independently supported by TLEF and Skylight. Additionally, seven interactive online tutorials have been developed and implemented over the past eight years to complement existing CHEM 121 lab experiments as part of an ongoing co-operative between Sophia Nussbaum and the ChemCollective of Carnegie Mellon University. Funding from Skylight was used to develop yet another interactive tutorial and refine two existing tutorials with Carnegie Mellon. In fall 2014, activities supported by UBC's Flexible Learning Initiative were implemented in CHEM 121.

People

CWSEI Deptartment Director: Jackie Stewart (2010-2017), Laurel Schafer (2007-2010)

STLFs: Elizabeth Gillis, Jane Maxwell, Kerry Knox, Jennifer Duis

Faculty: R. Algar, D. Bizzotto, M. Blades, G. Bussiere, G. Dake, E. Grant, P. Kennepohl, A. Lekhi, J. Love, V. Monga, J. Rodríguez Núñez, C. Rogers, R. Stoodley, M. Thachuck

Students: Chad Atkins, Claire Chatalova Sazepin, Eugene Chong, Caitlyn Grypma De Jong, Ravina Binning, Zachary Nevin, Armandeep Sidhu, Merrill Isenor, Nicholas Mah, Samantha D'Souza, Ainge (Y. C.) Chang, Aalia Sachedina, James Zhou, Michael Carlson, and Yuri Samozvanov

Activities

Overview of Activities

Course Evaluation & Redesign Phases

PHASE I (2008-2010):

Focused on the evaluation and redesign of the CHEM 123 lab – Physical and Organic Chemistry and CHEM 121 lab - Structural Chemistry, with Application to Chemistry of the Elements.

PHASE II (2013-2015):

Focused on 1) analytical chemistry courses (CHEM 211 and 311), 2) third-year integrated laboratories (CHEM 315/325/335/345), and 3) Global Challenges, a Chemistry Perspective (CHEM 341).

PHASE II (2016-2017):

Will address Chemistry 208 (Coordination Chemistry), 218 (Fundamentals of Reactivity in Inorganic Chemistry), 233 (Organic Chemistry for the Biological Sciences), 300 (Communicating Science), and 327 (Introduction to Materials Chemistry).

Additional Undergraduate Program Activities

- We identified interdisciplinary science lab skills that other science streams consider to be important and/or are expecting students to get from 1st year chemistry to inform our curriculum. Additionally, seven interactive online tutorials have been developed and implemented over the past nine years to complement existing CHEM 121 lab experiments as part of an ongoing co-operative between Sophia Nussbaum and the ChemCollective of Carnegie Mellon University. Funding from Skylight was used to develop another interactive tutorial and refine two existing tutorials with Carnegie Mellon. In fall 2014, activities supported by UBC's Flexible Learning Initiative were implemented in Chemistry 121 and currently work is underway to implement flexible learning activities in Chemistry 123.
- We surveyed Co-op employers to aid in focusing efforts of optimization and determining impact on upper level laboratory revitalization.
- The Department modified course curriculum for CHEM 415/425 to expand research opportunities to chemistry majors.
- In 2015 the Department started rolling out an entirely <u>new curriculum</u>. A new required course for chemistry majors (CHEM 300) "Communicating Chemistry" will be designed with the assistance of CWSEI to best achieve the course goals of improving students' communication skills and their awareness of the process of science.

TA Development

Anka Lekhi and Sophia Nussbaum have been offering yearly TA training since 2009, with support from the TA Training Program of the Provost and Vice-President Academic Office and the Chemistry Department. This training has emphasized the skills needed for incoming graduate students to teach first-year labs. Elizabeth Gillis has started a TA peer-mentoring program for students working in the third-year labs, which complements a start-of-term workshop.

Courses

Status as of May 2016:

Course	Learning goals	New Assessments	Improved Methods
CHEM 121: Structural	Course-level	Attitudes survey (C-LASS	Alterations made to
Chemistry, with	goals: Outline from	CHEM) given 3 Terms	increase alignment with
Application to	CHEM 123, focus on		1st-year lab goals:
Chemistry of the	transferable skill	Development and	
Elements (Lab	acquisition	implementation of end-	— Marks re-allocated
component)		of-term technique	to increase emphasis
(Oct '08 start)	Experiment-level goals: process for development	assessments:	on maintaining a lab notebook.
Faculty: Sophia	established	— Year 1: TA visual	
Nussbaum		assessment of	— Directions on
<u>STLF</u> : Jennifer Duis	Course-level outline and	technique with	maintaining a lab
	experiment-level	provided guide	notebook expanded in
	development process		lab manual.
🔁 Paper (JCE 2013): A	appropriate for the	— Year 2: Visual	D: (#. 1:
Process for Developing	entire lab program	assessment guide	— Brief "taking
Introductory Science		refined and technique	observations" module
Laboratory Learning		questions added to the	developed and added
Goals To Enhance		end-of-term quiz.	during check-in.
Student Learning and			— Peer marking of
Instructional Alignment			observations using
			supplied templates
			added to each
			experiment
			experiment
			— Technique modules
			will be expanded to
			include choosing
			glassware for
			analytical vs. non-
			analytical purposes.
			unuryticur purposes.
			— A new experiment
			was piloted
			r · · · ·
			— "Pair-technique-
			ing" (ala comp. sci.
			pair programming)
			was piloted with a

			small subset of students.
CHEM 123: Physical and	Course-level goals:	Chemistry background	Learning Goals
Organic Chemistry (Lab	working version,	and demographics	incorporated into lab
component)	inspired by Rice	survey developed and	manual (under
(July '08 start)	University's	given 2 Terms.	refinement).
	interdisciplinary science	given z renns.	l'ennementy.
Faculty: Sophia	lab learning objectives,	Attitudes survey (C-LASS	Alterations made to
Nussbaum, Laurel	approved by Chemistry	CHEM) given 2 Terms.	increase alignment with
Schafer, Jackie Stewart	Lab Committee		learning goals:
STLF: Jennifer Duis		Pre-/Post-Lab skills	
	Experiment-level goals:	survey (written)	— Marks re-allocated
The First Year	(developed from existing	developed & given 4	to increase emphasis
Assessment sub-	course materials) 4 of 4	Terms. "LG use"	on maintaining a lab
committee of the	experiments complete	questions added.	notebook.
Chemistry Lab	and approved by		
Committee oversaw this	Chemistry Lab	Refined hands-on lab	— Directions on
project. The sub-	Committee	skills assessment	maintaining a lab
committee members		implemented 2 terms.	notebook expanded in
were: Brian Cliff (chair),			lab manual.
Guillaume Bussiere, Ed		Assessment of	F 11 '
Grant, Laurel Schafer,		experiment specific	— Expanded quizzes will be introduced to
Vishakha Monga, Sophia		learning goal	test technical skills.
Nussbaum, John		achievement (surveys,	test technical skins.
Sherman, Robin		observations,	— Addition of manual
Stoodley, Nancy Vered,		interviews); 3rd round of	dilutions to
Peter Wassell, and Dana		refinement based on	electrochemistry
Zendrowski.		expert & student	experiment to increase
		validation	technical experience
🔁 <u>Poster (CWSEI EOY</u>			and conceptual
2009): Instruments for			understanding of the
assessing practical skill			effect of dilution on
development in a first-			voltage.
year chemistry			
laboratory course			— Lab final modified
			to test students' "solo"
			completion of an
			experimental design,
			recording of observations and data,
			and evaluation of skills
			using a pipet and
			weighing by
			" Signing Uy

CHEM 211: Analytical	Course-level learning	Mid-term survey of	Lecture:
	goals developed in	student perceptions of	Fall 2013: Introduction
	consultation with	instructional activities	of concept questions
	current and previous	and tools.	and clickers, and
	instructors of both		increased use of team-
0 ,	CHEM 211 and 311	End-of-term surveys	based-learning (TBL)
Nuñez		probing student	activities.
	Topic-level learning	perceptions of the	
	objectives have been		Winter 2014:
100 L	revised through an	of analytical chemistry	Introduction of clickers
	iterative process, with	or analytical chemistry	to support new and
<u>Education open nouse</u>	slight modifications each	Ongoing: Development	existing concept
2010/11/00	term. There now	of an analytical	questions and class
<u>implementation of an</u>	appears to be consensus	chemistry concept	activities. Continued use
<u>onnie nomework</u>	that the current learning	inventory	of TBLs. Short, in-class
system for practice and	goals meet the needs of	niventory	writing assignments
	all instructors.		connecting topics to big-
making skills			picture learning goals.
a .			picture learning goals.
Talk (CSC 97th			Winter 2015: Continued
Canadian Chemistry			use of iclickers.
Conference, June 2014):			Introduction of in-class
Development of a			
Concept Inventory for			worksheets for problem
Measuring Learning			solving related to the
Gains in Analytical			equilibrium unit.
<u>Chemistry</u>			Lab:
			Increased emphasis on
			lab skills via an early-
			term lab skills test
			(including a remedial
			intervention) and TA
			grading of lab skills
			based observation
			Fall 2013: Introduction
			and evaluation of a new
			guided-inquiry
			experiment in which
			students design, build,
			and test a simple
			photometer
			photometer

			of a new guided-inquiry experiment based on comparing instrumental and classical methods of analysis.
CHEM 311: Instrumental	Course-level learning	2014: Two-stage review	2014: Increased use of
Analytical Chemistry (Spring 2013 start) <u>Faculty</u> : Dan Bizzotto <u>STLF</u> : Jane Maxwell	goals developed in consultation with current and previous instructors of both CHEM 211 and 311	activity probing students' background knowledge of key concepts from 1st year physics and CHEM 211 administered on first	in-class activities, including clicker questions and predictions related to demonstrations and simulations
	Detailed learning objectives emphasizing core competencies required to achieve course-level goals	day of class Introduction of a two- stage midterm exam 2015: Continued use of two-stage review and midterm exam	Group activities emphasizing the common decision- making and evaluation processes that link the different topic areas of the course
		Modified regular course assignments to include exam-type questions (marked for effort rather than correctness), based students' feedback.	2015: Continued and expanded use of in-class activities, clickers, demonstrations, and simulations
		2016: Continued use of two-stage review and midterm exam. Continued use of revised course assignments.	Piloting a suite of tutorials focused on high-level problem- solving skills for the new course tutorials
			2016: Implemented tutorial activities
CHEM 315/325/335/345: Chemistry Integrated Laboratory	Course-level learning goals produced based on framework developed by previous CWSEI	April 2013: — Survey probing student perceptions of course (post-course)	Learning goals incorporated into lab manual
(Spring 2013 start) <u>Faculty</u> : J. Bates, G.	project in CHEM 123	— Attitudes survey (C- LASS CHEM)	Analysis of course content for purpose of informing future

Bussiere, T. Kunz, V. Monga, J. Rodríguez Núñez, C. Rogers, R. Stoodley <u>STLF</u> : Elizabeth Gillis, Kerry Knox (2013-2014) <u>Poster (Science</u> Education Open House 2016): Developing the third-year integrated chemistry laboratory: Putting the pieces together <u>Talk (Variety in</u> <u>Chemistry Education &</u> Physics Higher Education <u>Conference, August</u> 2014): The use of cognitive task analysis to inform the development of a laboratory course in chemistry		September 2013: — Survey probing student perceptions of orientation to course and expectations (pre- course) — Attitudes survey (C- LASS CHEM) December 2013: Survey probing student perceptions of new online safety training module April and December 2014: Survey probing student perceptions of course (post-course) September 2014 and January 2015: Survey probing student perceptions of orientation to course and expectations (pre-	development in terms of: — skills and techniques covered — cognitive tasks involved Dry lab workshop introduced focused on organic chemistry structures Pilot project in oral lab assessments for multiple experiments.
Chemistry Education & Physics Higher Education Conference, August 2014): The use of cognitive task analysis to inform the development of a laboratory course in		2014: Survey probing student perceptions of course (post-course) September 2014 and January 2015: Survey probing student perceptions of orientation to course	experiments.
CHEM 341: Global Challenges: A Chemical Perspective	Course-level learning goals produced	April 2013: Survey probing student perceptions of course	Introduction of in-class interactive activities to provide enhanced

(Spring 2013 start)	and attitudes towards	opportunities for
	role of chemistry in	discussion and peer-
Faculty: Gregory Dake	society (post-course)	instruction, including:
STLF: Elizabeth Gillis,		— jigsaw activities
Kerry Knox (2013-2014)	January 2014 and	— small-group
	January 2015:	discussion
Dister (Science	Survey probing student	— whole-class
Education Open House	attitudes towards	discussion
2015): Using Course	learning chemistry and	 concept mapping
Committees as Student	role of chemistry in	
Feedback	society (pre-course)	Introduction of
		semester-long group
🔁 Poster (CWSEI EOY	2015:	investigative research
2014): Research-based	Exams replaced with	and communication
instructional strategies	two-stage exams (total	project involving several
in a course on the role of	of three exams)	opportunities for
chemistry in solving		revising work based on
global challenges	Student course	feedback, peer review,
giobal challenges	committee created to	and structured practice
	provide continuous	in team-work
	feedback on the course.	
		Sample problems
		offered as additional
		resource

CHEM 113, 121, 415, 425, 449: Attitudes survey (C-LASS CHEM) administered Spring '09 (CHEM 113 & 121 also participated in the written Lab Skills Survey).

CHEM 233: Detailed learning objectives, attitudes survey (C-LASS CHEM), "flipped classroom" approach.

CHEM 425/448: Engaging students in cutting-edge chemical education research, report writing, and presentations.

Education Research

Comparison of Oral and Written Laboratory Reports

Compared to traditional written reports, oral assessment may provide a more accurate evaluation of conceptual understanding as well as provide enhanced opportunities for learning since feedback can be given in real time. We are studying the effect of mode of assessment on student learning and seeking to gain insight into how a student's preparation and experience of assessment affects short- and long-term learning.

Two-Stage Review

Jane Maxwell, Lisa McDonnell (Biology), and Carl Wieman wrote the article An Improved Design for In-Class Review, Journal of College Science Teaching, Vol. 44(5), pp. 48-52 (2015).

Analytical Chemistry Concept Inventory

Development of a diagnostic test to evaluate students' understanding of key concepts in 2nd year analytical chemistry is in progress. Talk (CSC 97th Canadian Chemistry Conference, June 2014): Development of a Concept Inventory for Measuring Learning Gains in Analytical Chemistry — Jane Maxwell

Chemistry Concept Diagnostic Tests

Propose administration and validation of an existing chemistry concept test to first year chemistry students.

Organic Chemistry (CHEM 233) Learning Objectives Alignment Study

Investigating students' perceptions of the alignment between learning objectives and assessment, probing their ability to judge cognitive complexity of learning objectives, assessment items, and study tactics.

1st Year Practical Lab Skills

Compare students' achievement of practical lab skills as determined by written vs. hands-on assessment

CHEM 123 Lab Learning Goals

Developed multiple assessments of students' achievement of lab learning goals: 2009): Instruments for assessing practical skill development in a first-year chemistry laboratory course

Attitudinal Survey

C-LASS CHEM given in multiple courses, statistical comparisons between UBC and CU-Boulder.

Poster (April 2009): General chemistry students' belief about chemistry and learning chemistry: An international comparison — Jennifer Duis, Carl Wieman, Laurel Schafer

2014-2015: CLASS-Chem survey data from 2008-2010 re-analyzed to examine trends between attitudes, attitude shifts, and choice of major in science (with a focus on Chemistry and Biochemistry majors). We are also in the process of verifying the factor structure of CLASS-Chem survey responses among UBC students.

Presentations at national/international meetings

237th, 240th, & 249th American Chemical Society National Meeting, 21st & 22nd Biennial Conference on Chemical Education, 92nd, 93rd, 97th, & 98th Canadian Chemistry Conference, Improving University Teaching 34th International Meeting, 20th International Conference on Learning, Society for Teaching and Learning in Higher Education (2015).

Impact

Transformed Course Counts

As of Spring 2018, we had 16 courses with CWSEI and/or Skylight influence:

Impact in terms of seats/registrations

We can look at this in terms of the **55 undergraduate CHEM courses offered in 2017** with LEC, LAB or DST as primary activity and excluding distance ed. sections. In terms of **seats/registrations** (with LEC, LAB or DST as primary activity; excludes distance ed. sections):

EFFECT	Seats.2012	Seats.2013	Seats.2014	Seats.2015	Seats.2016	Seats.2017
Transformed	552	474	1911	2261	2349	2378
LabTransform ed	3744	3585	3802	4010	4024	3897
Impact	441	410	349	364	397	398
Other/None	7490	7395	5687	5357	4950	4994
	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20	Prop.Seats.20
EFFECT	Prop.Seats.20 12	Prop.Seats.20 13	Prop.Seats.20 14	Prop.Seats.20 15	Prop.Seats.20 16	Prop.Seats.20 17
EFFECT Transformed	•	•	•	•		1
	12	13	. 14	15	. 16	17
Transformed LabTransform	12 4.5%	13 4.0%	14 16.3%	15 18.9%	16 20.0%	<u>17</u> 20.4%

Publications and Presentations

	A positive student experience of collaborative project work in upper-year undergraduate chemistry. Kerry Knox, Elizabeth Gillis, and Greg Dake (Chemistry, UBC)	
Paper	Chemistry Education Research and Practice, 20(2), 340–357 (2019), DOI:	<u>Link</u>
	10.1039/C8RP00251G	
	Build Your Own Photometer: A Guided-Inquiry Experiment To Introduce Analytical Instrumentation	
Paper	Jessie Wang, José Rodríguez Núñez, Jane Maxwell, and Russ Algar (Chemistry, UBC)	<u>restricted</u> <u>access link</u>
	J. of Chemical Ed, Vol. 93(1), pp 166–171 (2016), DOI: 10.1021/acs.jchemed.5b00426	
Paper	An Improved Design for In-Class Review E. Jane Maxwell (Chemistry, UBC), Lisa McDonnell (Zoology, UBC), & Carl Wieman	2
	Journal of College Science Teaching, Vol. 44(5), pp. 48-52 (2015)	
Paper	A Process for Developing Introductory Science Laboratory Learning Goals To Enhance Student Learning and Instructional Alignment Jennifer Duis, Laurel Schafer, Sophia Nussbaum, and Jaclyn Stewart (Chemistry, UBC)	2
	J. of Chemical Education, Vol. 90, No. 9, pp 1144–1150 (2013)	
Talk	The use of cognitive task analysis to inform the development of a laboratory course in chemistry Kerry Knox (Chemistry, UBC)	12
	Variety in Chemistry Education & Physics Higher Education Conference, University of Durham (August 2014)	
Talk	Development of a Concept Inventory for Measuring Learning Gains in Analytical Chemistry Jane Maxwell (Chemistry, UBC)	-
Turk	CSC 97th Canadian Chemistry Conference, Vancouver, BC (June 2014)	2

Poster	Students as key stakeholders: Exploring undergraduates' perceptions of teaching and learning in an introductory organic chemistry course Ashley Welsh (Curriculum & Pedagogy, UBC) & Jackie Stewart (Chemistry, UBC)	5 2
	Society for Teaching and Learning in Higher Education Conference, Kingston, ON (June 2014)	

Related Department Links

Chemistry Dept. home: https://www.chem.ubc.ca/

Chemistry Learning Blog: http://learning.chem.ubc.ca/