

Development of the PER User's Guide:

Identifying key features of research-based pedagogical tools for effective implementation

Sam McKagan American Association of Physics Teachers (McKagan Enterprises)

May 20, 2010, University of British Columbia

Outline of Talk

- Overview of PER User's Guide
- Review of previous research on faculty change
- Observations and interviews to study implementation of research-based pedagogical tools
- Findings:
 - No single consistent way to determine key features
 - Key features may not be implemented even by developers
 - Distinction between minimal and ideal implementation
- What I hope to learn from YOU

What is the PER User's Guide?

Vision: A web resource where physics educators* can learn about physics education research (PER) and how to apply it in their classrooms

* K-12 teachers and college faculty

Goals

- Increase communication between PER researchers and practicing educators
- Create online community where educators can connect with others working to improve their teaching
- Help educators teach better by learning about research results
- Help researchers do better research by learning more about what educators need

What will be included

- Guides to research-based "pedagogical tools" (curricula, techniques/methods, resources)
 - Summaries of the tool and key features
 - Tips for implementing tool effectively
 - Summaries of research base of tool
 - Addressing common obstacles to implementation
 - Reviews by researchers and educators
 - Ways to connect with other educators
 - Videos of exemplary classroom practice
 - Videos of teacher training workshops

What will be included

- General Information about PER:
 - Top results of PER
 - Reading lists
 - Guides to convincing skeptics
 - Frequently asked questions (FAQs)
 - Reviews of textbooks and homework systems
 - Lists of teacher training workshops and events
 - Summaries of subfields of PER
 - Open questions in PER
 - Videos of presentations by PER experts

Development Model

- Based on research previous research on faculty development, ongoing user testing, measurements of effectiveness, etc.
- Editor collects and creates content
- Site visits to PER research groups to create guides based on insider knowledge
- Build in wiki aspects so that others can contribute.
- Wait to release to the public until well-developed
- Marketing campaign through APS/AAPT mailing lists, workshops at national meetings, etc.
- Will be housed within ComPADRE

Pilot Site – Fall 2010

Goal: detailed guides to selected pedagogical tools

Research into faculty change (Henderson and Dancy)

- 87% of physics faculty are aware of at least one research-based instructional strategy
- 48% use at least one in their teaching
- Many (most?) users make significant adaptations (consciously 20-40% or unconsciously 80-90%)
- Adaptations can be positive (adapting to unique institutional circumstances) or negative (e.g. "Peer Instruction" without peer interaction)
- For effective implementation of pedagogical tools, educators must understand "key features"

Henderson and Dancy Recommendations for curriculum developers

- 1. Provide easily modifiable materials
- 2. Disseminate and research ideas in addition to curriculum
- 3. Explicitly research the conditions for transfer
- 4. View faculty as partners
- 5. Acknowledge that change is difficult and support, rather than blame instructors

My work so far:

- Observe pedagogical tools in action
 - Physics by Inquiry
 - UW Tutorials
 - TA Training Sessions
- Interview developers
- Interview adopters
- Identify key features necessary for effective implementation

How to identify key features?

• Your ideas...

How to identify key features?

- 1. Ask developers
- 2. Observe developers' implementation
 - What happens in TA prep
 - What happens in class
- 3. Read developers' published materials
 - Instructor's Guide, research papers, curriculum
- 4. Ask (expert) adopters
- 5. Observe adopters' implementation
- 6. Read adopters' published materials

How to identify key features?

Why no consistency?

- Developers may have ideals that curriculum does not actually address
- Tool may "work" just as well without features developers regard as key
- Adopters may have better understanding of key features than developers due to experience implementing in new environment
- Adopters may develop innovations that enhance or improve curriculum
- The reality of what happens in class may not match developers' ideals even at their own institutions

Example – Peer Instruction

- Developers say that students must answer individually first, then talk to their neighbors and answer again
- Many adopters don't bother with part 2 (H&D)
- Many adopters don't bother with part 1 (McKagan)
- PER researchers often say informally that part 1 isn't critical but part 2 is
- Even when instructor encourages discussion, many students don't talk to each other
- No careful studies of what really matters for:
 - Conceptual learning
 - Beliefs
 - ???

Many apparent inconsistencies can be resolved by categorizing key features in terms of

Minimal vs. Ideal Implementation

Mostly logistical – how to set up classroom, deal with grading, what TAs should *do* in TA prep, etc. Mostly pedagogical – how TAs should behave in the classroom, what they should *learn* in TA prep, etc.

Tentative Conclusions

- Reluctance to publicize more than minimal suggestions

 want tools to be easy to adopt
- Developers and expert adopters tend to agree on ideal implementation, but are rarely able to put it into practice
- Understanding ideal may be necessary to establish environment for successful implementation, even if classroom practice rarely goes beyond minimal
- Ideal is learned through mentorship and experience, not through reading
- Can I accelerate spread of awareness of ideal?

What I hope to learn from YOU

- STLFs have experience helping faculty implement research-based methods
- What have you learned about:
 - how to guide faculty productively?
 - what faculty need to know?
 - what obstacles faculty face?
 - what resources faculty need that do not yet exist?