
2007-2008 Sample Learning Goals Development Trajectory Steven Wolfman, UBC

Tracking Changing Learning Goals (long version)
We (Anne Condon and Steve Wolfman) have been working on expressing learning goals
for CPSC 101 and revising the course so students will more effectively achieve those
learning goals. Our efforts in the course fall between the proposed level for core courses
and for non-core courses. This is a brief tale of the JavaScript programming introduction
in 101 and how it developed through two iterations of revision of the course.

In the process, we came to a much clearer understanding of what we needed students to
learn from CPSC 101 (and crucially, what we did not need them to learn) and discovered
some natural ideas about how to teach students to emphasize these goals.

Starting Point
A year and a half ago, students in 101 were expected to “learn JavaScript”. Students got
a more detailed sense of the learning goals from the textbook reading, from a small
number of sample exam questions, and from our introductory JavaScript remarks:

• Learning JavaScript will introduce you to programming: the expression of
algorithms in a computer executable language!

• JavaScript will illustrate to you central programming concepts such as: the
importance of structuring data and key “control constructs”.

We actually introduced the JavaScript language through two example interactive web
pages. For example, here is the central code from the first example:

onMouseOver="document.images[0].src = 'logoUBC.jpg';"

After 2 hours of lecture, students worked through JavaScript challenge exercises for
another 1.5 hours. We observed that students fared very poorly on these exercises,
making little progress and often not even understanding the intent of the questions.

You can see our materials, including lecture notes, reading assignments, and sample
exam questions, at http://www.ugrad.cs.ubc.ca/~cs101/2006s1/.

First Iteration
Last year, we reviewed the resources and assessments focused on JavaScript (among
other things), trying to articulate our implicit learning goals for the unit. At the same
time, we were also establishing a set of four high-level learning goals to guide the whole
class, and we tried to connect up these detailed learning goals to the high-level ones. We
added the learning goals we developed to our existing slides:

After the “JavaScript” unit, you will:
• appreciate the extra power to express processes of a programming language

(vs. a markup language)

http://www.ugrad.cs.ubc.ca/%7Ecs101/2006s1/

2007-2008 Sample Learning Goals Development Trajectory Steven Wolfman, UBC

• understand a few key programming “control constructs”, particularly events
and conditionals

• know how to embed JavaScript in a web page
• know how and where to find JavaScript code
• be able to modify existing JavaScript code to suit your purposes

Note: the best way to learn to program is to program! So, do the lab and
explore playfully beyond the bounds of the lab!

Our primary direct benefit from this exercise was clarifying our intentions for the unit,
although phrasing the learning goals also suggested some small changes to the lectures.
One indirect benefit was easier “hand-off” of the whole topic and specific subtopics to
TAs and future course instructors through a clear statement of the main focus of the unit.
Communication with the students also improved as we and they could “attribute” quiz
and exam questions to explicitly stated goals, which made the exams easier to plan and
allowed students to study more efficiently. (We see “studying to the exam” in the form
of mastering the learning goals as a positive form of “efficiency”, as opposed to
overfitting to a particular practice exam.)

Unfortunately, these goals remain rather vague and difficult to connect directly with
assessments. For example, what does it mean to “understand a few key programming
‘control constructs’”? Should students be able to write code with these constructs? Read
code with these constructs? Precisely model execution of code containing these
constructs? All of these?

Second Iteration
We’re currently in the process of a second iteration of the course learning goals, along
with more substantial revision of teaching materials. For the JavaScript unit, we still
found the connection between learning goals and exam questions was weak.
Furthermore, our learning goals failed to emphasize what we considered the most
important programming skill for 101 students: reading and tracing existing code.

So, we again rewrote the learning goals, this time with emphasis on the activities students
engage in as they read and trace code. We split the new goals into three units that
covered 4 hours of lecture time (about the same amount of time as previously used):

After Part I of the “JavaScript” unit, you will be able to:
• apply the “study/model/predict/experiment/refine” technique to learn new

programming concepts
• connect the following terms to their use in programs: function, function

declaration, function call, function name, function body, parameter, parameter
list, variable, value, statement, return statement, assignment statement,
expression, orthogonality, sequential execution (primarily textbook work)

• accurately model and predict the behaviour of variables in JavaScript programs
• accurately model and predict the flow of control in a JavaScript program through

sequential execution
• employ the concept of “orthogonality” to combine your knowledge of different

programming elements, including being able to interpret their combined effect

After Part II of the “JavaScript” unit, you will be able to:

2007-2008 Sample Learning Goals Development Trajectory Steven Wolfman, UBC

• accurately model (and so predict) the evaluation of any expression, no matter
how complex, as long as you have a good model of the parts

• model the construction and interpretation of expressions using numbers, strings
(text snippets in quotes), arithmetic operators, and function calls

• use the <script> tag and events to add behaviours to your web pages (assuming
you have a reference listing the available events and the behaviours you want
are ones that you know how to implement in JavaScript)

After Part III of the “JavaScript” unit, you will be able to:

• accurately model (and so predict) the flow of control in a JavaScript program
through a function call

• accurately model (and so predict) the flow of control in a JavaScript program
through conditionals (both if and if/else statements)

These goals centred on the idea of building a mental model of how elements of a program
work, applying that mental model to a new piece of code to predict its outcome, testing
the outcome, and revising the mental model to accommodate the outcome. This led
naturally to a classroom treatment in which we pose a series of small programming
problems for student groups to solve, generally before any detailed discussion of the
concepts used. We then discuss any different solutions, work with the students to
articulate the models represented by each solution, experiment, and refine students’
models. We’re currently teaching the JavaScript unit with these goals and approach (3/4
of the way through).

Assessing these learning goals is fairly straightforward, since they were designed around
processes that the students can master and display. For example, we expect to test the
goal “accurately model and predict the behaviour of variables in JavaScript programs” with an
exam question like:

Consider the following code:

 var x, y, z; // Line 1
 x = num1; // Line 2
 y = num2; // Line 3
 x = y; // Line 4
 z = x + y; // Line 5
 z = z + 1; // Line 6

 alert("x is: " + x);
 alert("y is: " + y);
 alert("z is: " + z);

For lines 1-6 of the code, sketch the state of each of the variables after that line of code executes.
Finally, what is the output of the program? [The real question would include delineated spaces for
each sketch.]

This second round provided the same benefits as the first. In addition, rephrasing the
learning goals suggested a concrete classroom approach that (based on formative in-class
assessments) has been effective in preparing students to read and trace small programs.

	Tracking Changing Learning Goals (long version)
	Starting Point
	First Iteration
	Second Iteration

